1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
/*
* 26/11/2006 - 17:02
*
* GraphMonkey - mono based graphing calculator
* Copyright (C) 2006 Lounis Bellabes
* nolius@users.sourceforge.net
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
using System;
public class Calculus {
public string phrase;
public operation op;
public Calculus(string phrase)
{
this.phrase = phrase;
this.op = new operation(this.phrase);
this.op.corrige();
}
// numerical derivative at the point x
public double ndfdx(double x)
{
double h = x + 0.000001d;
double top = op.calculer(h)-op.calculer(x);
double bottom = h-x;
return Math.Round(top/bottom, 4);
}
// numerical second derivative at the point x
public double n2dfdx(double x)
{
double h = x + 0.0001d;
double h2 = x + 0.0002d;
double top = op.calculer(h2) - op.calculer(h) - op.calculer(h) + op.calculer(x);
double bottom = (h-x)*(h-x);
return Math.Round(top/bottom, 4);
}
// numerical integral of a function on the interval [a,b] using Simpson's Rule.
public double simpsonsrule(double a, double b)
{
double n = 100.0d;
double total = 0;
double h = Math.Abs(b-a)/n;
double[] l = new double[120];
double x = a;
l[0] = op.calculer(x);
int count = 1;
while (count < n) {
x = (double)a + count*h;
if (count%2 == 0) {
l[count] = 2*op.calculer(x);
}
else {
l[count] = 4*op.calculer(x);
}
count++;
}
x = (double)b;
l[count] = op.calculer(x);
for (int i = 0; i <=count; i++) {
total = total + l[i];
}
return Math.Round((total*h)/3d, 4);
}
public double averagevalue(double a, double b)
{
return Math.Round((simpsonsrule(a,b))/(b-a), 4);
}
}
|