1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#define STANDALONE
#include <assert.h>
#include <sparse/SparseMatrix.h>
#include <sparse/general.h>
#include <math.h>
#include <sparse/QuadTree.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <cgraph/cgraph.h>
#include "make_map.h"
#include <sfdpgen/stress_model.h>
#include "country_graph_coloring.h"
#include <sparse/colorutil.h>
#include <neatogen/delaunay.h>
#include <util/agxbuf.h>
#include <util/alloc.h>
#include <util/debug.h>
#include <util/list.h>
#include <util/prisize_t.h>
#include <edgepaint/lab.h>
#include <edgepaint/node_distinct_coloring.h>
void map_palette_optimal_coloring(char *color_scheme, SparseMatrix A0,
float **rgb_r, float **rgb_g, float **rgb_b){
/*
for a graph A, get a distinctive color of its nodes so that the color distanmce among all nodes are maximized. Here
color distance on a node is defined as the minimum of color differences between a node and its neighbors.
color_scheme: rgb, gray, lab, or one of the color palettes in color_palettes.h, or a list of hex rgb colors separaterd by comma like "#ff0000,#00ff00"
A: the graph of n nodes
cdim: dimension of the color space
rgb_r, rgb_g, rgb_b: float array of length A->m + 1, which contains color for each country. 1-based
*/
/*color: On input an array of size n*cdim, if NULL, will be allocated. On exit the final color assignment for node i is [cdim*i,cdim*(i+1)), in RGB (between 0 to 1)
*/
double *colors = NULL;
int n = A0->m, i, cdim;
SparseMatrix A;
bool weightedQ = true;
{double *dist = NULL;
A = SparseMatrix_symmetrize(A0, false);
SparseMatrix_distance_matrix(A, &dist);
SparseMatrix_delete(A);
A = SparseMatrix_from_dense(n, n, dist);
free(dist);
A = SparseMatrix_remove_diagonal(A);
SparseMatrix_export(stdout, A);
}
// lightness: of the form 0,70, specifying the range of lightness of LAB
// color. Ignored if scheme is not COLOR_LAB.
int lightness[] = {0, 100};
// accuracy is the threshold given so that when finding the coloring for each
// node, the optimal is with in "accuracy" of the true global optimal.
const double accuracy = 0.01;
// seed: random_seed. If negative, consider -seed as the number of random
// start iterations
const int seed = -10;
node_distinct_coloring(color_scheme, lightness, weightedQ, A, accuracy, seed,
&cdim, &colors);
if (A != A0){
SparseMatrix_delete(A);
}
*rgb_r = gv_calloc(n + 1, sizeof(float));
*rgb_g = gv_calloc(n + 1, sizeof(float));
*rgb_b = gv_calloc(n + 1, sizeof(float));
for (i = 0; i < n; i++){
(*rgb_r)[i+1] = (float) colors[cdim*i];
(*rgb_g)[i+1] = (float) colors[cdim*i + 1];
(*rgb_b)[i+1] = (float) colors[cdim*i + 2];
}
free(colors);
}
void map_optimal_coloring(int seed, SparseMatrix A, float *rgb_r, float *rgb_g, float *rgb_b){
int *p = NULL;
float *u = NULL;
int n = A->m;
int i;
country_graph_coloring(seed, A, &p);
rgb_r++; rgb_b++; rgb_g++;/* seems necessary, but need to better think about cases when clusters are not contiguous */
vector_float_take(n, rgb_r, n, p, &u);
for (i = 0; i < n; i++) rgb_r[i] = u[i];
vector_float_take(n, rgb_g, n, p, &u);
for (i = 0; i < n; i++) rgb_g[i] = u[i];
vector_float_take(n, rgb_b, n, p, &u);
for (i = 0; i < n; i++) rgb_b[i] = u[i];
free(u);
}
static int get_poly_id(int ip, SparseMatrix point_poly_map){
return point_poly_map->ja[point_poly_map->ia[ip]];
}
void improve_contiguity(int n, int dim, int *grouping, SparseMatrix poly_point_map, double *x, SparseMatrix graph){
/*
grouping: which group each of the vertex belongs to
poly_point_map: a matrix of dimension npolys x (n + nrandom), poly_point_map[i,j] != 0 if polygon i contains the point j.
. If j < n, it is the original point, otherwise it is artificial point (forming the rectangle around a label) or random points.
*/
int i, j, *ia, *ja, u, v;
SparseMatrix point_poly_map, D;
double dist;
int nbad = 0;
int maxit = 10;
D = SparseMatrix_get_real_adjacency_matrix_symmetrized(graph);
assert(graph->m == n);
ia = D->ia; ja = D->ja;
double *a = D->a;
/* point_poly_map: each row i has only 1 entry at column j, which says that point i is in polygon j */
point_poly_map = SparseMatrix_transpose(poly_point_map);
for (i = 0; i < n; i++){
u = i;
for (j = ia[i]; j < ia[i+1]; j++){
v = ja[j];
dist = distance_cropped(x, dim, u, v);
if (grouping[u] != grouping[v]){
a[j] = 1.1*dist;
} else if (get_poly_id(u, point_poly_map) == get_poly_id(v, point_poly_map)){
a[j] = dist;
} else {
nbad++;
a[j] = 0.9*dist;
}
}
}
GV_INFO("ratio (edges among discontiguous regions vs total edges)=%f", (double)nbad / ia[n]);
const int flag = stress_model(dim, D, x, maxit);
assert(!flag);
SparseMatrix_delete(D);
SparseMatrix_delete(point_poly_map);
}
struct Triangle {
int vertices[3];/* 3 points */
double center[2]; /* center of the triangle */
};
static void normal(double v[], double normal[]){
if (v[0] == 0){
normal[0] = 1; normal[1] = 0;
} else {
normal[0] = -v[1];
normal[1] = v[0];
}
}
static void triangle_center(double x[], double y[], double z[], double c[]){
/* find the "center" c, which is the intersection of the 3 vectors that are normal to each
of the edges respectively, and which passes through the center of the edges respectively
center[{x_, y_, z_}] := Module[
{xy = 0.5*(x + y), yz = 0.5*(y + z), zx = 0.5*(z + x), nxy, nyz,
beta, cen},
nxy = normal[y - x];
nyz = normal[y - z];
beta = (y-x).(xy - yz)/(nyz.(y-x));
cen = yz + beta*nyz;
Graphics[{Line[{x, y, z, x}], Red, Point[cen], Line[{cen, xy}],
Line[{cen, yz}], Green, Line[{cen, zx}]}]
]
*/
double xy[2], yz[2], nxy[2], nyz[2], ymx[2], ymz[2], beta, bot;
int i;
for (i = 0; i < 2; i++) ymx[i] = y[i] - x[i];
for (i = 0; i < 2; i++) ymz[i] = y[i] - z[i];
for (i = 0; i < 2; i++) xy[i] = 0.5*(x[i] + y[i]);
for (i = 0; i < 2; i++) yz[i] = 0.5*(y[i] + z[i]);
normal(ymx, nxy);
normal(ymz, nyz);
bot = nyz[0]*(x[0]-y[0])+nyz[1]*(x[1]-y[1]);
if (bot == 0){/* xy and yz are parallel */
c[0] = xy[0]; c[1] = xy[1];
return;
}
beta = ((x[0] - y[0])*(xy[0] - yz[0])+(x[1] - y[1])*(xy[1] - yz[1]))/bot;
c[0] = yz[0] + beta*nyz[0];
c[1] = yz[1] + beta*nyz[1];
}
static SparseMatrix matrix_add_entry(SparseMatrix A, int i, int j, int val){
int i1 = i, j1 = j;
if (i < j) {
i1 = j; j1 = i;
}
A = SparseMatrix_coordinate_form_add_entry(A, j1, i1, &val);
return SparseMatrix_coordinate_form_add_entry(A, i1, j1, &val);
}
static void plot_dot_edges(FILE *f, SparseMatrix A){
int i, *ia, *ja, j;
int n = A->m;
ia = A->ia;
ja = A->ja;
for (i = 0; i < n; i++){
for (j = ia[i]; j < ia[i+1]; j++){
if (ja[j] == i) continue;
fprintf(f,"%d -- %d;\n",i,ja[j]);
}
}
}
static void plot_dot_labels(FILE *f, int n, int dim, double *x, char **labels, float *fsz){
int i;
for (i = 0; i < n; i++){
if (fsz){
fprintf(f, "%d [label=\"%s\", pos=\"%lf,%lf\", fontsize=%f];\n",i, labels[i], x[i*dim], x[i*dim+1], fsz[i]);
} else {
fprintf(f, "%d [label=\"%s\", pos=\"%lf,%lf\"];\n",i, labels[i], x[i*dim], x[i*dim+1]);
}
}
}
typedef LIST(double) doubles_t;
static void dot_polygon(agxbuf *sbuff, doubles_t xp, doubles_t yp,
double line_width, bool fill, const char *cstring) {
assert(LIST_SIZE(&xp) == LIST_SIZE(&yp));
if (!LIST_IS_EMPTY(&xp)){
if (fill) {
agxbprint(sbuff,
" c %" PRISIZE_T " -%s C %" PRISIZE_T " -%s P %" PRISIZE_T " ",
strlen(cstring), cstring, strlen(cstring), cstring,
LIST_SIZE(&xp));
} else {
if (line_width > 0){
size_t len_swidth = (size_t)snprintf(NULL, 0, "%f", line_width);
agxbprint(sbuff, " c %" PRISIZE_T " -%s S %" PRISIZE_T
" -setlinewidth(%f) L %" PRISIZE_T " ", strlen(cstring), cstring,
len_swidth + 14, line_width, LIST_SIZE(&xp));
} else {
agxbprint(sbuff, " c %" PRISIZE_T " -%s L %" PRISIZE_T " ", strlen(cstring),
cstring, LIST_SIZE(&xp));
}
}
for (size_t i = 0; i < LIST_SIZE(&xp); i++) {
agxbprint(sbuff, " %f %f", LIST_GET(&xp, i), LIST_GET(&yp, i));
}
}
}
static void plot_dot_polygons(agxbuf *sbuff, double line_width,
const char *line_color, SparseMatrix polys,
double *x_poly, int *polys_groups, float *r,
float *g, float *b, const char *opacity) {
int i, j, *ia = polys->ia, *ja = polys->ja, *a = polys->a, npolys = polys->m, nverts = polys->n, ipoly,first;
const bool fill = false;
const bool use_line = line_width >= 0;
agxbuf cstring_buffer = {0};
const char *cstring = "#aaaaaaff";
doubles_t xp = {0};
doubles_t yp = {0};
GV_INFO("npolys = %d", npolys);
first = abs(a[0]); ipoly = first + 1;
for (i = 0; i < npolys; i++){
for (j = ia[i]; j < ia[i+1]; j++){
assert(ja[j] < nverts && ja[j] >= 0);
(void)nverts;
if (abs(a[j]) != ipoly){/* the first poly, or a hole */
ipoly = abs(a[j]);
if (r && g && b) {
rgb2hex(r[polys_groups[i]], g[polys_groups[i]], b[polys_groups[i]],
&cstring_buffer, opacity);
cstring = agxbuse(&cstring_buffer);
}
dot_polygon(sbuff, xp, yp, line_width, fill, cstring);
// start a new polygon
LIST_CLEAR(&xp);
LIST_CLEAR(&yp);
}
LIST_APPEND(&xp, x_poly[2 * ja[j]]);
LIST_APPEND(&yp, x_poly[2 * ja[j] + 1]);
}
if (use_line) {
dot_polygon(sbuff, xp, yp, line_width, fill, line_color);
} else {
/* why set fill to polys_groups[i]?*/
dot_polygon(sbuff, xp, yp, -1, true, cstring);
}
}
agxbfree(&cstring_buffer);
LIST_FREE(&xp);
LIST_FREE(&yp);
}
void plot_dot_map(Agraph_t* gr, int n, int dim, double *x, SparseMatrix polys,
SparseMatrix poly_lines, double line_width,
const char *line_color, double *x_poly, int *polys_groups,
char **labels, float *fsz, float *r, float *g, float *b,
const char* opacity, SparseMatrix A, FILE* f) {
/* if graph object exist, we just modify some attributes, otherwise we dump the whole graph */
bool plot_polyQ = true;
agxbuf sbuff = {0};
if (!r || !g || !b) plot_polyQ = false;
if (!gr) {
fprintf(f, "graph map {\n node [margin = 0 width=0.0001 height=0.00001 shape=plaintext];\n graph [outputorder=edgesfirst, bgcolor=\"#dae2ff\"]\n edge [color=\"#55555515\",fontname=\"Helvetica-Bold\"]\n");
} else {
agattr_text(gr, AGNODE, "margin", "0");
agattr_text(gr, AGNODE, "width", "0.0001");
agattr_text(gr, AGNODE, "height", "0.0001");
agattr_text(gr, AGNODE, "shape", "plaintext");
agattr_text(gr, AGNODE, "margin", "0");
agattr_text(gr, AGNODE, "fontname", "Helvetica-Bold");
agattr_text(gr, AGRAPH, "outputorder", "edgesfirst");
agattr_text(gr, AGRAPH, "bgcolor", "#dae2ff");
if (!A) agattr_text(gr, AGEDGE, "style","invis");/* do not plot edges */
}
/*polygons */
if (plot_polyQ) {
if (!gr) fprintf(f,"_background = \"");
plot_dot_polygons(&sbuff, -1., NULL, polys, x_poly, polys_groups, r, g, b, opacity);
}
/* polylines: line width is set here */
if (line_width >= 0){
plot_dot_polygons(&sbuff, line_width, line_color, poly_lines, x_poly, polys_groups, NULL, NULL, NULL, NULL);
}
if (!gr) {
fprintf(f,"%s",agxbuse(&sbuff));
fprintf(f,"\"\n");/* close polygons/lines */
} else {
agattr_text(gr, AGRAPH, "_background", agxbuse(&sbuff));
agwrite(gr, f);
}
/* nodes */
if (!gr && labels) plot_dot_labels(f, n, dim, x, labels, fsz);
/* edges */
if (!gr && A) plot_dot_edges(f, A);
/* background color + plot label?*/
if (!gr) fprintf(f, "}\n");
agxbfree(&sbuff);
}
/** construct triangles
*
* Always contains a self edge and is symmetric.
*
* @param n Number of points
* @param dim Dimension, only first2D is used
* @param x Point j is stored x[j × dim] -- x[j × dim + dim - 1]
* @param nt [out] Number of triangles
* @param T [out] triangles
* @param E [out] A matrix of size n×n, if two points i > j are connected by an
* triangulation edge, and is neighboring two triangles t1 and t2, then
* A[i, j] is both t1 and t2
* @return 0 on success
*/
static int get_tri(int n, int dim, double *x, int *nt, struct Triangle **T,
SparseMatrix *E) {
int i, j, i0, i1, i2, ntri;
SparseMatrix A, B;
int* trilist = get_triangles(x, n, &ntri);
if (trilist == NULL) {
return -1;
}
*T = gv_calloc(ntri, sizeof(struct Triangle));
A = SparseMatrix_new(n, n, 1, MATRIX_TYPE_INTEGER, FORMAT_COORD);
for (i = 0; i < ntri; i++) {
for (j = 0; j < 3; j++) {
(*T)[i].vertices[j] = trilist[i * 3 + j];
}
i0 = (*T)[i].vertices[0]; i1 = (*T)[i].vertices[1]; i2 = (*T)[i].vertices[2];
triangle_center(&x[i0*dim], &x[i1*dim], &x[i2*dim], (*T)[i].center);
A = matrix_add_entry(A, i0, i1, i);
A = matrix_add_entry(A, i1, i2, i);
A = matrix_add_entry(A, i2, i0, i);
}
B = SparseMatrix_from_coordinate_format_not_compacted(A);
SparseMatrix_delete(A);
B = SparseMatrix_sort(B);
*E = B;
*nt = ntri;
free(trilist);
return 0;
}
static SparseMatrix get_country_graph(int n, SparseMatrix A, int *groups, int GRP_RANDOM, int GRP_BBOX){
/* form a graph each vertex is a group (a country), and a vertex is connected to another if the two countries shares borders.
since the group ID may not be contiguous (e.g., only groups 2,3,5, -1), we will return NULL if one of the group has non-positive ID! */
int *ia, *ja;
int one = 1, jj, i, j, ig1, ig2;
SparseMatrix B, BB;
int min_grp, max_grp;
min_grp = max_grp = groups[0];
for (i = 0; i < n; i++) {
max_grp = MAX(groups[i], max_grp);
min_grp = MIN(groups[i], min_grp);
}
if (min_grp <= 0) return NULL;
B = SparseMatrix_new(max_grp, max_grp, 1, MATRIX_TYPE_INTEGER, FORMAT_COORD);
ia = A->ia;
ja = A->ja;
for (i = 0; i < n; i++){
ig1 = groups[i]-1;/* add a diagonal entry */
SparseMatrix_coordinate_form_add_entry(B, ig1, ig1, &one);
for (j = ia[i]; j < ia[i+1]; j++){
jj = ja[j];
if (i != jj && groups[i] != groups[jj] && groups[jj] != GRP_RANDOM && groups[jj] != GRP_BBOX){
ig1 = groups[i]-1; ig2 = groups[jj]-1;
SparseMatrix_coordinate_form_add_entry(B, ig1, ig2, &one);
}
}
}
BB = SparseMatrix_from_coordinate_format(B);
SparseMatrix_delete(B);
return BB;
}
static void conn_comp(int n, SparseMatrix A, int *groups, SparseMatrix *poly_point_map){
/* form a graph where only vertices that are connected as well as in the same group are connected */
int *ia, *ja;
int one = 1, jj, i, j;
SparseMatrix B, BB;
int ncomps, *comps = NULL;
B = SparseMatrix_new(n, n, 1, MATRIX_TYPE_INTEGER, FORMAT_COORD);
ia = A->ia;
ja = A->ja;
for (i = 0; i < n; i++){
for (j = ia[i]; j < ia[i+1]; j++){
jj = ja[j];
if (i != jj && groups[i] == groups[jj]){
SparseMatrix_coordinate_form_add_entry(B, i, jj, &one);
}
}
}
BB = SparseMatrix_from_coordinate_format(B);
int *comps_ptr = SparseMatrix_weakly_connected_components(BB, &ncomps, &comps);
SparseMatrix_delete(B);
SparseMatrix_delete(BB);
*poly_point_map = SparseMatrix_new(ncomps, n, n, MATRIX_TYPE_PATTERN, FORMAT_CSR);
free((*poly_point_map)->ia);
free((*poly_point_map)->ja);
(*poly_point_map)->ia = comps_ptr;
(*poly_point_map)->ja = comps;
(*poly_point_map)->nz = n;
}
static void get_poly_lines(int nt, SparseMatrix E, int ncomps, int *comps_ptr,
int *comps, int *groups, SparseMatrix *poly_lines,
int **polys_groups, int GRP_RANDOM, int GRP_BBOX) {
/*============================================================
polygon outlines
============================================================*/
int i, *tlist, nz, ipoly, nnt, ii, jj, t1, t2, t, cur, next, nn, j, nlink, sta;
int *elist, edim = 3;/* a list tell which vertex a particular vertex is linked with during poly construction.
since the surface is a cycle, each can only link with 2 others, the 3rd position is used to record how many links
*/
int *ie = E->ia, *je = E->ja, *e = E->a;
SparseMatrix A;
int *mask = gv_calloc(nt, sizeof(int));
for (i = 0; i < nt; i++) mask[i] = -1;
/* loop over every point in each connected component */
elist = gv_calloc(nt * edim, sizeof(int));
tlist = gv_calloc(nt * 2, sizeof(int));
*poly_lines = SparseMatrix_new(ncomps, nt, 1, MATRIX_TYPE_INTEGER, FORMAT_COORD);
*polys_groups = gv_calloc(ncomps, sizeof(int));
for (i = 0; i < nt; i++) elist[i*edim + 2] = 0;
nz = ie[E->m] - ie[0];
ipoly = 1;
for (i = 0; i < ncomps; i++){
nnt = 0;
for (j = comps_ptr[i]; j < comps_ptr[i+1]; j++){
ii = comps[j];
(*polys_groups)[i] = groups[ii];/* assign the grouping of each poly */
/* skip the country formed by random points */
if (groups[ii] == GRP_RANDOM || groups[ii] == GRP_BBOX) continue;
for (jj = ie[ii]; jj < ie[ii+1]; jj++){
if (groups[je[jj]] != groups[ii] && jj < nz - 1 && je[jj] == je[jj+1]){/* an triangle edge neighboring 2 triangles and two ends not in the same groups */
t1 = e[jj];
t2 = e[jj+1];
nlink = elist[t1*edim + 2]%2;
elist[t1*edim + nlink] = t2;/* t1->t2*/
elist[t1*edim + 2]++;
nlink = elist[t2*edim + 2]%2;
elist[t2*edim + nlink] = t1;/* t1->t2*/
elist[t2*edim + 2]++;
tlist[nnt++] = t1; tlist[nnt++] = t2;
jj++;
}
}
}/* done poly edges for this component i */
/* form one or more (if there is a hole) polygon outlines for this component */
for (j = 0; j < nnt; j++){
t = tlist[j];
if (mask[t] != i){
cur = sta = t; mask[cur] = i;
next = neighbor(t, 1, edim, elist);
SparseMatrix_coordinate_form_add_entry(*poly_lines, i, cur, &ipoly);
while (next != sta){
mask[next] = i;
SparseMatrix_coordinate_form_add_entry(*poly_lines, i, next, &ipoly);
nn = neighbor(next, 0, edim, elist);
if (nn == cur) {
nn = neighbor(next, 1, edim, elist);
}
assert(nn != cur);
cur = next;
next = nn;
}
SparseMatrix_coordinate_form_add_entry(*poly_lines, i, sta, &ipoly);/* complete a cycle by adding starting point */
ipoly++;
}
}/* found poly_lines for this comp */
}
A = SparseMatrix_from_coordinate_format_not_compacted(*poly_lines);
SparseMatrix_delete(*poly_lines);
*poly_lines = A;
free(tlist);
free(elist);
free(mask);
}
static void cycle_print(int head, int *cycle, int *edge_table){
int cur, next;
cur = head;
fprintf(stderr, "cycle (edges): {");
while ((next = cycle_next(cur)) != head){
fprintf(stderr, "%d,",cur);
cur = next;
}
fprintf(stderr, "%d}\n",cur);
cur = head;
fprintf(stderr, "cycle (vertices): ");
while ((next = cycle_next(cur)) != head){
fprintf(stderr, "%d--",edge_head(cur));
cur = next;
}
fprintf(stderr, "%d--%d\n",edge_head(cur),edge_tail(cur));
}
static int same_edge(int ecur, int elast, int *edge_table){
return (edge_head(ecur) == edge_head(elast) && edge_tail(ecur) == edge_tail(elast))
|| (edge_head(ecur) == edge_tail(elast) && edge_tail(ecur) == edge_head(elast));
}
static void get_polygon_solids(int nt, SparseMatrix E, int ncomps,
int *comps_ptr, int *comps, SparseMatrix *polys)
{
/*============================================================
polygon solids that will be colored
============================================================*/
int *edge_table;/* a table of edges of the triangle graph. If two vertex u and v are connected and are adjacent to two triangles
t1 and t2, then from u there are two edges to v, one denoted as t1->t2, and the other t2->t1. They are
numbered as e1 and e2. edge_table[e1]={t1,t2} and edge_table[e2]={t2,t1}
*/
SparseMatrix half_edges;/* a graph of triangle edges. If two vertex u and v are connected and are adjacent to two triangles
t1 and t2, then from u there are two edges to v, one denoted as t1->t2, and the other t2->t1. They are
numbered as e1 and e2. Likewise from v to u there are also two edges e1 and e2.
*/
int n = E->m, *ie = E->ia, *je = E->ja, *e = E->a, ne, i, j, t1, t2, jj, ii;
int *cycle, cycle_head = 0;/* a list of edges that form a cycle that describe the polygon. cycle[e][0] gives the prev edge in the cycle from e,
cycle[e][1] gives the next edge
*/
int *edge_cycle_map, NOT_ON_CYCLE = -1;/* map an edge e to its position on cycle, unless it does not exist (NOT_ON_CYCLE) */
int *emask;/* whether an edge is seen this iter */
enum {NO_DUPLICATE = -1};
int *elist, edim = 3;/* a list tell which edge a particular vertex is linked with when a voro cell has been visited,
since the surface is a cycle, each vertex can only link with 2 edges, the 3rd position is used to record how many links
*/
int k, duplicate, ee = 0, ecur, enext, eprev, cur, next, nn, nlink, head, elast = 0, etail, tail, ehead, efirst;
int DEBUG_CYCLE = 0;
SparseMatrix B;
ne = E->nz;
edge_table = gv_calloc(ne * 2, sizeof(int));
half_edges = SparseMatrix_new(n, n, 1, MATRIX_TYPE_INTEGER, FORMAT_COORD);
ne = 0;
for (i = 0; i < n; i++){
for (j = ie[i]; j < ie[i+1]; j++){
if (j < ie[n] - ie[0] - 1 && i > je[j] && je[j] == je[j+1]){/* an triangle edge neighboring 2 triangles. Since E is symmetric, we only do one edge of E*/
t1 = e[j];
t2 = e[j+1];
jj = je[j];
assert(jj < n);
edge_table[ne*2] = t1;/*t1->t2*/
edge_table[ne*2+1] = t2;
half_edges = SparseMatrix_coordinate_form_add_entry(half_edges, i, jj, &ne);
half_edges = SparseMatrix_coordinate_form_add_entry(half_edges, jj, i, &ne);
ne++;
edge_table[ne*2] = t2;/*t2->t1*/
edge_table[ne*2+1] = t1;
half_edges = SparseMatrix_coordinate_form_add_entry(half_edges, i, jj, &ne);
half_edges = SparseMatrix_coordinate_form_add_entry(half_edges, jj, i, &ne);
ne++;
j++;
}
}
}
assert(E->nz >= ne);
cycle = gv_calloc(ne * 2, sizeof(int));
B = SparseMatrix_from_coordinate_format_not_compacted(half_edges);
SparseMatrix_delete(half_edges);half_edges = B;
edge_cycle_map = gv_calloc(ne, sizeof(int));
emask = gv_calloc(ne, sizeof(int));
for (i = 0; i < ne; i++) edge_cycle_map[i] = NOT_ON_CYCLE;
for (i = 0; i < ne; i++) emask[i] = -1;
ie = half_edges->ia;
je = half_edges->ja;
e = half_edges->a;
elist = gv_calloc(nt * 3, sizeof(int));
for (i = 0; i < nt; i++) elist[i*edim + 2] = 0;
*polys = SparseMatrix_new(ncomps, nt, 1, MATRIX_TYPE_INTEGER, FORMAT_COORD);
for (i = 0; i < ncomps; i++){
if (DEBUG_CYCLE) fprintf(stderr, "\n ============ comp %d has %d members\n",i, comps_ptr[i+1]-comps_ptr[i]);
for (k = comps_ptr[i]; k < comps_ptr[i+1]; k++){
ii = comps[k];
duplicate = NO_DUPLICATE;
if (DEBUG_CYCLE) fprintf(stderr,"member = %d has %d neighbors\n",ii, ie[ii+1]-ie[ii]);
for (j = ie[ii]; j < ie[ii+1]; j++){
jj = je[j];
ee = e[j];
t1 = edge_head(ee);
if (DEBUG_CYCLE) fprintf(stderr," linked with %d using half-edge %d, {head,tail} of the edge = {%d, %d}\n",jj, ee, t1, edge_tail(ee));
nlink = elist[t1*edim + 2]%2;
elist[t1*edim + nlink] = ee;/* t1->t2*/
elist[t1*edim + 2]++;
if (edge_cycle_map[ee] != NOT_ON_CYCLE) duplicate = ee;
emask[ee] = ii;
}
if (duplicate == NO_DUPLICATE){
/* this must be the first time the cycle is being established, a new voro cell*/
ecur = ee;
cycle_head = ecur;
cycle_next(ecur) = ecur;
cycle_prev(ecur) = ecur;
edge_cycle_map[ecur] = 1;
head = cur = edge_head(ecur);
next = edge_tail(ecur);
if (DEBUG_CYCLE) fprintf(stderr, "NEW CYCLE\n starting with edge %d, {head,tail}={%d,%d}\n", ee, head, next);
while (next != head){
enext = neighbor(next, 0, edim, elist);/* two voro edges linked with triangle "next" */
if ((edge_head(enext) == cur && edge_tail(enext) == next)
|| (edge_head(enext) == next && edge_tail(enext) == cur)){/* same edge */
enext = neighbor(next, 1, edim, elist);
};
if (DEBUG_CYCLE) fprintf(stderr, "cur edge = %d, next edge %d, {head,tail}={%d,%d},\n",ecur, enext, edge_head(enext), edge_tail(enext));
nn = edge_head(enext);
if (nn == next) nn = edge_tail(enext);
cycle_next(enext) = cycle_next(ecur);
cycle_prev(enext) = ecur;
cycle_next(ecur) = enext;
cycle_prev(ee) = enext;
edge_cycle_map[enext] = 1;
ecur = enext;
cur = next;
next = nn;
}
if (DEBUG_CYCLE) cycle_print(ee, cycle,edge_table);
} else {
/* we found a duplicate edge, remove that, and all contiguous neighbors that overlap with the current voro
*/
ecur = ee = duplicate;
while (emask[ecur] == ii){
/* contiguous overlapping edges, Cycling is not possible
since the cycle can not complete surround the new voro cell and yet
do not contain any other edges
*/
ecur = cycle_next(ecur);
}
if (DEBUG_CYCLE) fprintf(stderr," duplicating edge = %d, starting from the a non-duplicating edge %d, search backwards\n",ee, ecur);
ecur = cycle_prev(ecur);
efirst = ecur;
while (emask[ecur] == ii){
if (DEBUG_CYCLE) fprintf(stderr," remove edge %d (%d--%d)\n",ecur, edge_head(ecur), edge_tail(ecur));
/* short this duplicating edge */
edge_cycle_map[ecur] = NOT_ON_CYCLE;
enext = cycle_next(ecur);
eprev = cycle_prev(ecur);
cycle_next(ecur) = ecur;/* isolate this edge */
cycle_prev(ecur) = ecur;
cycle_next(eprev) = enext;/* short */
cycle_prev(enext) = eprev;
elast = ecur;/* record the last removed edge */
ecur = eprev;
}
if (DEBUG_CYCLE) {
fprintf(stderr, "remaining (broken) cycle = ");
cycle_print(cycle_next(ecur), cycle,edge_table);
}
/* we now have a broken cycle of head = edge_tail(ecur) and tail = edge_head(cycle_next(ecur)) */
ehead = ecur; etail = cycle_next(ecur);
cycle_head = ehead;
head = edge_tail(ehead);
tail = edge_head(etail);
/* pick an edge ev from head in the voro that is a removed edge: since the removed edges form a path starting from
efirst, and at elast (head of elast is head), usually we just need to check that ev is not the same as elast,
but in the case of a voro filling in a hole, we also need to check that ev is not efirst,
since in this case every edge of the voro cell is removed
*/
ecur = neighbor(head, 0, edim, elist);
if (same_edge(ecur, elast, edge_table)){
ecur = neighbor(head, 1, edim, elist);
};
if (DEBUG_CYCLE) fprintf(stderr, "forwarding now from edge %d = {%d, %d}, try to reach vtx %d, first edge from voro = %d\n",
ehead, edge_head(ehead), edge_tail(ehead), tail, ecur);
/* now go along voro edges till we reach the tail of the broken cycle*/
cycle_next(ehead) = ecur;
cycle_prev(ecur) = ehead;
cycle_prev(etail) = ecur;
cycle_next(ecur) = etail;
if (same_edge(ecur, efirst, edge_table)){
if (DEBUG_CYCLE) fprintf(stderr, "this voro cell fill in a hole completely!!!!\n");
} else {
edge_cycle_map[ecur] = 1;
head = cur = edge_head(ecur);
next = edge_tail(ecur);
if (DEBUG_CYCLE) fprintf(stderr, "starting with edge %d, {head,tail}={%d,%d}\n", ecur, head, next);
while (next != tail){
enext = neighbor(next, 0, edim, elist);/* two voro edges linked with triangle "next" */
if ((edge_head(enext) == cur && edge_tail(enext) == next)
|| (edge_head(enext) == next && edge_tail(enext) == cur)){/* same edge */
enext = neighbor(next, 1, edim, elist);
};
if (DEBUG_CYCLE) fprintf(stderr, "cur edge = %d, next edge %d, {head,tail}={%d,%d},\n",ecur, enext, edge_head(enext), edge_tail(enext));
nn = edge_head(enext);
if (nn == next) nn = edge_tail(enext);
cycle_next(enext) = cycle_next(ecur);
cycle_prev(enext) = ecur;
cycle_next(ecur) = enext;
cycle_prev(etail) = enext;
edge_cycle_map[enext] = 1;
ecur = enext;
cur = next;
next = nn;
}
}
}
}
/* done this component, load to sparse matrix, unset edge_map*/
ecur = cycle_head;
while ((enext = cycle_next(ecur)) != cycle_head){
edge_cycle_map[ecur] = NOT_ON_CYCLE;
head = edge_head(ecur);
SparseMatrix_coordinate_form_add_entry(*polys, i, head, &i);
ecur = enext;
}
edge_cycle_map[ecur] = NOT_ON_CYCLE;
head = edge_head(ecur); tail = edge_tail(ecur);
SparseMatrix_coordinate_form_add_entry(*polys, i, head, &i);
SparseMatrix_coordinate_form_add_entry(*polys, i, tail, &i);
/* unset edge_map */
}
B = SparseMatrix_from_coordinate_format_not_compacted(*polys);
SparseMatrix_delete(*polys);
*polys = B;
SparseMatrix_delete(half_edges);
free(cycle);
free(edge_cycle_map);
free(elist);
free(emask);
free(edge_table);
}
static void get_polygons(int n, int nrandom, int dim, int *grouping, int nt,
struct Triangle *Tp, SparseMatrix E, int *nverts,
double **x_poly, SparseMatrix *poly_lines,
SparseMatrix *polys, int **polys_groups,
SparseMatrix *poly_point_map,
SparseMatrix *country_graph) {
int i, j;
int *groups;
int maxgrp;
int *comps = NULL, *comps_ptr = NULL, ncomps;
int GRP_RANDOM, GRP_BBOX;
assert(dim == 2);
*nverts = nt;
groups = gv_calloc(n + nrandom, sizeof(int));
maxgrp = grouping[0];
for (i = 0; i < n; i++) {
maxgrp = MAX(maxgrp, grouping[i]);
groups[i] = grouping[i];
}
GRP_RANDOM = maxgrp + 1; GRP_BBOX = maxgrp + 2;
for (i = n; i < n + nrandom - 4; i++) {/* all random points in the same group */
groups[i] = GRP_RANDOM;
}
for (i = n + nrandom - 4; i < n + nrandom; i++) {/* last 4 pts of the expanded bonding box in the same group */
groups[i] = GRP_BBOX;
}
/* finding connected components: vertices that are connected in the triangle graph, as well as in the same group */
conn_comp(n + nrandom, E, groups, poly_point_map);
ncomps = (*poly_point_map)->m;
comps = (*poly_point_map)->ja;
comps_ptr = (*poly_point_map)->ia;
/* connected components are such that the random points and the bounding box 4 points forms the last
remaining components */
for (i = ncomps - 1; i >= 0; i--) {
if (groups[comps[comps_ptr[i]]] != GRP_RANDOM &&
groups[comps[comps_ptr[i]]] != GRP_BBOX) break;
}
ncomps = i + 1;
GV_INFO("ncomps = %d", ncomps);
*x_poly = gv_calloc(dim * nt, sizeof(double));
for (i = 0; i < nt; i++){
for (j = 0; j < dim; j++){
(*x_poly)[i*dim+j] = Tp[i].center[j];
}
}
/*============================================================
polygon outlines
============================================================*/
get_poly_lines(nt, E, ncomps, comps_ptr, comps, groups, poly_lines,
polys_groups, GRP_RANDOM, GRP_BBOX);
/*============================================================
polygon solids
============================================================*/
get_polygon_solids(nt, E, ncomps, comps_ptr, comps, polys);
*country_graph = get_country_graph(n, E, groups, GRP_RANDOM, GRP_BBOX);
free(groups);
}
static int make_map_internal(bool include_OK_points, int n, int dim, double *x0,
int *grouping0, SparseMatrix graph,
double bounding_box_margin, int nrandom,
int nedgep, double shore_depth_tol, int *nverts,
double **x_poly, SparseMatrix *poly_lines,
SparseMatrix *polys, int **polys_groups,
SparseMatrix *poly_point_map,
SparseMatrix *country_graph, int highlight_cluster) {
double xmax[2], xmin[2], area, *x = x0;
int i, j;
QuadTree qt;
int dim2 = 2, nn = 0;
int max_qtree_level = 10;
double ymin[2], min;
int imin, nzok = 0, nzok0 = 0, nt;
double *xran, point[2];
struct Triangle *Tp;
SparseMatrix E;
double boxsize[2];
bool INCLUDE_OK_POINTS = include_OK_points;/* OK points are random points inserted and found to be within shore_depth_tol of real/artificial points,
including them instead of throwing away increase realism of boundary */
int *grouping = grouping0;
int HIGHLIGHT_SET = highlight_cluster;
for (j = 0; j < dim2; j++) {
xmax[j] = x[j];
xmin[j] = x[j];
}
for (i = 0; i < n; i++){
for (j = 0; j < dim2; j++) {
xmax[j] = fmax(xmax[j], x[i*dim+j]);
xmin[j] = fmin(xmin[j], x[i*dim+j]);
}
}
boxsize[0] = xmax[0] - xmin[0];
boxsize[1] = xmax[1] - xmin[1];
area = boxsize[0]*boxsize[1];
if (nrandom == 0) {
nrandom = n;
} else if (nrandom < 0){
nrandom = -nrandom * n;
} else if (nrandom < 4) {/* by default we add 4 point on 4 corners anyway */
nrandom = 0;
} else {
nrandom -= 4;
}
if (shore_depth_tol < 0) shore_depth_tol = sqrt(area/(double) n); /* set to average distance for random distribution */
GV_INFO("nrandom=%d shore_depth_tol=%.08f", nrandom, shore_depth_tol);
/* add artificial points along each edge to avoid as much as possible
two connected components be separated due to small shore depth */
{
int nz;
double *y;
int k, t, np=nedgep;
if (graph && np){
fprintf(stderr,"add art np = %d\n",np);
nz = graph->nz;
y = gv_calloc(dim * n + dim * nz * np, sizeof(double));
for (i = 0; i < n*dim; i++) y[i] = x[i];
grouping = gv_calloc(n + nz * np, sizeof(int));
for (i = 0; i < n; i++) grouping[i] = grouping0[i];
nz = n;
for (i = 0; i < graph->m; i++){
for (j = graph->ia[i]; j < graph->ia[i+1]; j++){
if (!HIGHLIGHT_SET || (grouping[i] == grouping[graph->ja[j]] && grouping[i] == HIGHLIGHT_SET)){
for (t = 0; t < np; t++){
for (k = 0; k < dim; k++){
y[nz*dim+k] = t/((double) np)*x[i*dim+k] + (1-t/((double) np))*x[(graph->ja[j])*dim + k];
}
assert(n + (nz-n)*np + t < n + nz*np && n + (nz-n)*np + t >= 0);
if (t/((double) np) > 0.5){
grouping[nz] = grouping[i];
} else {
grouping[nz] = grouping[graph->ja[j]];
}
nz++;
}
}
}
}
fprintf(stderr, "after adding edge points, n:%d->%d\n",n, nz);
n = nz;
x = y;
qt = QuadTree_new_from_point_list(dim, nz, max_qtree_level, y);
} else {
qt = QuadTree_new_from_point_list(dim, n, max_qtree_level, x);
}
}
/* generate random points for lake/sea effect */
if (nrandom != 0){
for (i = 0; i < dim2; i++) {
if (bounding_box_margin > 0){
xmin[i] -= bounding_box_margin;
xmax[i] += bounding_box_margin;
} else if (bounding_box_margin < 0) {
xmin[i] -= boxsize[i]*(-bounding_box_margin);
xmax[i] += boxsize[i]*(-bounding_box_margin);
} else { // auto bounding box
xmin[i] -= fmax(boxsize[i] * 0.2, 2.* shore_depth_tol);
xmax[i] += fmax(boxsize[i] * 0.2, 2 * shore_depth_tol);
}
}
if (Verbose) {
double bbm = bounding_box_margin;
if (bbm > 0)
fprintf (stderr, "bounding box margin: %.06f", bbm);
else if (bbm < 0)
fprintf (stderr, "bounding box margin: (%.06f * %.06f)", boxsize[0], -bbm);
else
fprintf(stderr, "bounding box margin: %.06f",
fmax(boxsize[0] * 0.2, 2 * shore_depth_tol));
}
if (nrandom < 0) {
const double area2 = (xmax[1] - xmin[1]) * (xmax[0] - xmin[0]);
const double n1 = floor(area2 / (shore_depth_tol * shore_depth_tol));
const double n2 = n * floor(area2 / area);
nrandom = fmax(n1, n2);
}
srand(123);
xran = gv_calloc((nrandom + 4) * dim2, sizeof(double));
int nz = 0;
if (INCLUDE_OK_POINTS){
nzok0 = nzok = nrandom - 1;/* points that are within tolerance of real or artificial points */
if (grouping == grouping0) {
int *grouping2 = gv_calloc(n + nrandom, sizeof(int));
memcpy(grouping2, grouping, sizeof(int)*n);
grouping = grouping2;
} else {
grouping = gv_recalloc(grouping, n, n + nrandom, sizeof(int));
}
}
nn = n;
for (i = 0; i < nrandom; i++){
for (j = 0; j < dim2; j++){
point[j] = xmin[j] + (xmax[j] - xmin[j])*drand();
}
QuadTree_get_nearest(qt, point, ymin, &imin, &min);
if (min > shore_depth_tol){/* point not too close, accepted */
for (j = 0; j < dim2; j++){
xran[nz*dim2+j] = point[j];
}
nz++;
} else if (INCLUDE_OK_POINTS && min > shore_depth_tol/10){/* avoid duplicate points */
for (j = 0; j < dim2; j++){
xran[nzok*dim2+j] = point[j];
}
grouping[nn++] = grouping[imin];
nzok--;
}
}
nrandom = nz;
if (Verbose) fprintf(stderr, "nn nrandom=%d\n", nrandom);
} else {
xran = gv_calloc(4 * dim2, sizeof(double));
}
/* add 4 corners even if nrandom = 0. The corners should be further away from the other points to avoid skinny triangles */
for (i = 0; i < dim2; i++) xmin[i] -= 0.2*(xmax[i]-xmin[i]);
for (i = 0; i < dim2; i++) xmax[i] += 0.2*(xmax[i]-xmin[i]);
i = nrandom;
for (j = 0; j < dim2; j++) xran[i*dim2+j] = xmin[j];
i++;
for (j = 0; j < dim2; j++) xran[i*dim2+j] = xmax[j];
i++;
xran[i*dim2] = xmin[0]; xran[i*dim2+1] = xmax[1];
i++;
xran[i*dim2] = xmax[0]; xran[i*dim2+1] = xmin[1];
nrandom += 4;
double *xcombined;
if (INCLUDE_OK_POINTS){
xcombined = gv_calloc((nn + nrandom) * dim2, sizeof(double));
} else {
xcombined = gv_calloc((n + nrandom) * dim2, sizeof(double));
}
for (i = 0; i < n; i++) {
for (j = 0; j < dim2; j++) xcombined[i*dim2+j] = x[i*dim+j];
}
for (i = 0; i < nrandom; i++) {
for (j = 0; j < dim2; j++) xcombined[(i + nn)*dim2+j] = xran[i*dim+j];
}
if (INCLUDE_OK_POINTS){
for (i = 0; i < nn - n; i++) {
for (j = 0; j < dim2; j++) xcombined[(i + n)*dim2+j] = xran[(nzok0 - i)*dim+j];
}
n = nn;
}
{
int nz, nh = 0;/* the set to highlight */
if (HIGHLIGHT_SET){
if (Verbose) fprintf(stderr," highlight cluster %d, n = %d\n",HIGHLIGHT_SET, n);
/* shift set to the beginning */
nz = 0;
for (i = 0; i < n; i++){
if (grouping[i] == HIGHLIGHT_SET){
nh++;
for (j = 0; j < dim; j++){
xcombined[nz++] = x[i*dim+j];
}
}
}
for (i = 0; i < n; i++){
if (grouping[i] != HIGHLIGHT_SET){
for (j = 0; j < dim; j++){
xcombined[nz++] = x[i*dim+j];
}
}
}
assert(nz == n*dim);
for (i = 0; i < nh; i++){
grouping[i] = 1;
}
for (i = nh; i < n; i++){
grouping[i] = 2;
}
nrandom += n - nh;/* count everything except cluster HIGHLIGHT_SET as random */
n = nh;
if (Verbose) fprintf(stderr,"nh = %d\n",nh);
}
}
int rc = 0;
if (get_tri(n + nrandom, dim2, xcombined, &nt, &Tp, &E) != 0) {
rc = -1;
goto done;
}
get_polygons(n, nrandom, dim2, grouping, nt, Tp, E, nverts, x_poly,
poly_lines, polys, polys_groups, poly_point_map, country_graph);
SparseMatrix_delete(E);
free(Tp);
done:
free(xcombined);
free(xran);
if (grouping != grouping0) free(grouping);
if (x != x0) free(x);
return rc;
}
static void add_point(int *n, int igrp, double **x, int *nmax, double point[], int **groups){
if (*n >= *nmax){
int old_nmax = *nmax;
*nmax = 20 + *n;
*x = gv_recalloc(*x, 2 * old_nmax, 2 * *nmax, sizeof(double));
*groups = gv_recalloc(*groups, old_nmax, *nmax, sizeof(int));
}
(*x)[(*n)*2] = point[0];
(*x)[(*n)*2+1] = point[1];
(*groups)[*n] = igrp;
(*n)++;
}
static void get_boundingbox(int n, int dim, double *x, double *width, double *bbox){
int i;
bbox[0] = bbox[1] = x[0];
bbox[2] = bbox[3] = x[1];
for (i = 0; i < n; i++){
bbox[0] = fmin(bbox[0], x[i * dim] - width[i * dim]);
bbox[1] = fmax(bbox[1], x[i * dim] + width[i * dim]);
bbox[2] = fmin(bbox[2], x[i * dim + 1] - width[i * dim + 1]);
bbox[3] = fmax(bbox[3], x[i * dim + 1] + width[i * dim + 1]);
}
}
int make_map_from_rectangle_groups(bool include_OK_points,
int n, int dim, double *x, double *sizes,
int *grouping, SparseMatrix graph, double bounding_box_margin, int nrandom, int *nart, int nedgep,
double shore_depth_tol,
int *nverts, double **x_poly,
SparseMatrix *poly_lines, SparseMatrix *polys, int **polys_groups, SparseMatrix *poly_point_map,
SparseMatrix *country_graph, int highlight_cluster){
/* create a list of polygons from a list of rectangles in 2D. rectangles belong to groups. rectangles in the same group that are also close
geometrically will be in the same polygon describing the outline of the group. The main difference for this function and
make_map_from_point_groups is that in this function, the input are points with width/heights, and we try not to place
"lakes" inside these rectangles. This is achieved approximately by adding artificial points along the perimeter of the rectangles,
as well as near the center.
input:
include_OK_points: OK points are random points inserted and found to be within shore_depth_tol of real/artificial points,
. including them instead of throwing away increase realism of boundary
n: number of points
dim: dimension of the points. If dim > 2, only the first 2D is used.
x: coordinates
sizes: width and height
grouping: which group each of the vertex belongs to
graph: the link structure between points. If graph == NULL, this is not used. otherwise
. it is assumed that matrix is symmetric and the graph is undirected
bounding_box_margin: margin used to form the bounding box.
. if negative, it is taken as relative. i.e., -0.5 means a margin of 0.5*box_size
nrandom (input): number of random points to insert in the bounding box to figure out lakes and seas.
. If nrandom = 0, no points are inserted, if nrandom < 0, the number is decided automatically.
.
nart: on entry, number of artificial points to be added along each side of a rectangle enclosing the labels. if < 0, auto-selected.
. On exit, actual number of artificial points added.
nedgep: number of artificial points are adding along edges to establish as much as possible a bright between nodes
. connected by the edge, and avoid islands that are connected. k = 0 mean no points.
shore_depth_tol: nrandom random points are inserted in the bounding box of the points,
. such random points are then weeded out if it is within distance of shore_depth_tol from
. real points. If 0, auto assigned
output:
nverts: number of vertices in the Voronoi diagram
x_poly: the 2D coordinates of these polygons, dimension nverts*2
poly_lines: the sparse matrix representation of the polygon indices, as well as their identity. The matrix is of size
. npolygons x nverts. The i-th polygon is formed by linking vertices with index in the i-th row of the sparse matrix.
. Each row is of the form {{i,j1,m},...{i,jk,m},{i,j1,m},{i,l1,m+1},...}, where j1--j2--jk--j1 form one loop,
. and l1 -- l2 -- ... form another. Each row can have more than 1 loop only when the connected region the polylines represent
. has at least 1 holes.
polys: the sparse matrix representation of the polygon indices, as well as their identity. The matrix is of size
. npolygons x nverts. The i-th polygon is formed by linking vertices with index in the i-th row of the sparse matrix.
. Unlike poly_lines, here each row represent an one stroke drawing of the SOLID polygon, vertices
. along this path may repeat
polys_groups: the group (color) each polygon belongs to, this include all groups of the real points,
. plus the random point group and the bounding box group
poly_point_map: a matrix of dimension npolys x (n + nrandom), poly_point_map[i,j] != 0 if polygon i contains the point j.
. If j < n, it is the original point, otherwise it is artificial point (forming the rectangle around a label) or random points.
country_graph: shows which country is a neighbor of which country.
. if country i and country j are neighbor, then the {i,j} entry is the total number of vertices that
. belongs to i and j, and share an edge of the triangulation. In addition, {i,i} and {j,j} have values equal
. to the number of vertices in each of the countries. If the input "grouping" has negative or zero value, then
. country_graph = NULL.
*/
double *X;
int N, nmax, i, j, igrp;
int *groups;
double K = *nart; // average number of points added per side of rectangle
double avgsize[2], avgsz, h[2], p1, p0;
double point[2];
double bbox[4];
if (K < 0){
K = round(10 / (1 + n / 400.0)); // 0 if n > 3600
}
*nart = 0;
if (Verbose){
int maxgp = grouping[0];
int mingp = grouping[0];
for (i = 0; i < n; i++) {
maxgp = MAX(maxgp, grouping[i]);
mingp = MIN(mingp, grouping[i]);
}
fprintf(stderr, "max grouping - min grouping + 1 = %d\n",maxgp - mingp + 1);
}
int rc = 0;
if (!sizes){
return make_map_internal(include_OK_points, n, dim, x, grouping, graph,
bounding_box_margin, nrandom, nedgep,
shore_depth_tol, nverts, x_poly, poly_lines, polys,
polys_groups, poly_point_map, country_graph,
highlight_cluster);
} else {
/* add artificial node due to node sizes */
avgsize[0] = 0;
avgsize[1] = 0;
for (i = 0; i < n; i++){
for (j = 0; j < 2; j++) {
avgsize[j] += sizes[i*dim+j];
}
}
for (i = 0; i < 2; i++) avgsize[i] /= n;
avgsz = 0.5*(avgsize[0] + avgsize[1]);
GV_INFO("avgsize = {%f, %f}", avgsize[0], avgsize[1]);
nmax = 2*n;
X = gv_calloc(dim * (n + nmax), sizeof(double));
groups = gv_calloc(n + nmax, sizeof(int));
for (i = 0; i < n; i++) {
groups[i] = grouping[i];
for (j = 0; j < 2; j++){
X[i*2+j] = x[i*dim+j];
}
}
N = n;
if (shore_depth_tol < 0) {
shore_depth_tol = -(shore_depth_tol)*avgsz;
} else if (shore_depth_tol == 0){
get_boundingbox(n, dim, x, sizes, bbox);
const double area = (bbox[1] - bbox[0]) * (bbox[3] - bbox[2]);
shore_depth_tol = sqrt(area / n);
GV_INFO("setting shore length ======%f", shore_depth_tol);
}
/* add artificial points in an anti-clockwise fashion */
double delta[2] = {0};
if (K > 0){
delta[0] = .5*avgsize[0]/K; delta[1] = .5*avgsize[1]/K;/* small perturbation to make boundary between labels looks more fractal */
}
for (i = 0; i < n; i++){
igrp = grouping[i];
double nadded[2] = {0};
for (j = 0; j < 2; j++) {
if (avgsz > 0){
nadded[j] = round(K * sizes[i * dim + j] / avgsz);
}
}
/*top: left to right */
if (nadded[0] > 0){
h[0] = sizes[i*dim]/nadded[0];
point[0] = x[i*dim] - sizes[i*dim]/2;
p1 = point[1] = x[i*dim+1] + sizes[i*dim + 1]/2;
add_point(&N, igrp, &X, &nmax, point, &groups);
for (double k = 0; k < nadded[0] - 1; k++){
point[0] += h[0];
point[1] = p1 + (0.5-drand())*delta[1];
add_point(&N, igrp, &X, &nmax, point, &groups);
}
/* bot: right to left */
point[0] = x[i*dim] + sizes[i*dim]/2;
p1 = point[1] = x[i*dim+1] - sizes[i*dim + 1]/2;
add_point(&N, igrp, &X, &nmax, point, &groups);
for (double k = 0; k < nadded[0] - 1; k++){
point[0] -= h[0];
point[1] = p1 + (0.5-drand())*delta[1];
add_point(&N, igrp, &X, &nmax, point, &groups);
}
}
if (nadded[1] > 0){
/* left: bot to top */
h[1] = sizes[i*dim + 1]/nadded[1];
p0 = point[0] = x[i*dim] - sizes[i*dim]/2;
point[1] = x[i*dim+1] - sizes[i*dim + 1]/2;
add_point(&N, igrp, &X, &nmax, point, &groups);
for (double k = 0; k < nadded[1] - 1; k++){
point[0] = p0 + (0.5-drand())*delta[0];
point[1] += h[1];
add_point(&N, igrp, &X, &nmax, point, &groups);
}
/* right: top to bot */
p0 = point[0] = x[i*dim] + sizes[i*dim]/2;
point[1] = x[i*dim+1] + sizes[i*dim + 1]/2;
add_point(&N, igrp, &X, &nmax, point, &groups);
for (double k = 0; k < nadded[1] - 1; k++){
point[0] = p0 + (0.5-drand())*delta[0];
point[1] -= h[1];
add_point(&N, igrp, &X, &nmax, point, &groups);
}
}
*nart = N - n;
}/* done adding artificial points due to node size*/
rc = make_map_internal(include_OK_points, N, dim, X, groups, graph,
bounding_box_margin, nrandom, nedgep,
shore_depth_tol, nverts, x_poly, poly_lines, polys,
polys_groups, poly_point_map, country_graph,
highlight_cluster);
free(groups);
free(X);
}
return rc;
}
|