1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/**
* @file
* @brief
* [transitive reduction](https://en.wikipedia.org/wiki/Transitive_reduction)
* filter for directed graphs, API: cgraph.h,
* implements @ref graphviz_tred,
* used in cmd/tools/tred.c
*
* @ingroup cgraph_app
*/
/*
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Authors: Stephen North, Emden Gansner
* Contributors: Details at https://graphviz.org
*/
#include <cgraph/cghdr.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <util/alloc.h>
#include <util/list.h>
typedef struct {
bool on_stack : 1;
unsigned char dist;
} nodeinfo_t;
#define ON_STACK(ninfo, n) (ninfo[AGSEQ(n)].on_stack)
#define DISTANCE(ninfo, n) (ninfo[AGSEQ(n)].dist)
#define agrootof(n) ((n)->root)
static unsigned char uchar_min(unsigned char a, unsigned char b) {
if (a < b)
return a;
return b;
}
typedef LIST(Agedge_t *) edge_stack_t;
static void push(edge_stack_t *sp, Agedge_t *ep, nodeinfo_t *ninfo) {
// mark this edge on the stack
ON_STACK(ninfo, aghead(ep)) = true;
// insert the new edge
LIST_PUSH_BACK(sp, ep);
}
static Agedge_t *pop(edge_stack_t *sp, nodeinfo_t *ninfo) {
if (LIST_IS_EMPTY(sp)) {
return NULL;
}
// remove the top
Agedge_t *e = LIST_POP_BACK(sp);
// mark it as no longer on the stack
ON_STACK(ninfo, aghead(e)) = false;
return e;
}
static Agedge_t *top(edge_stack_t *sp) {
if (LIST_IS_EMPTY(sp)) {
return NULL;
}
return *LIST_BACK(sp);
}
/* Main function for transitive reduction.
* This does a DFS starting at node n. Each node records the length of
* its largest simple path from n. We only care if the length is > 1. Node
* n will have distance 0; outneighbors of n will have distance 1 or 2; all
* others will have distance 2.
*
* During the DFS, we only push edges on the stack whose head has distance 0
* (i.e., hasn't been visited yet), setting its distance to the distance of the
* tail node plus one. If we find a head node with distance 1, we don't push the
* edge, since it has already been in a DFS, but we update its distance. We also
* check for back edges and report these.
*
* After the DFS, we check all outedges of n. Those edges whose head has
* distance 2 we delete. We also delete all but one copy of any edges with the
* same head.
*/
static int dfs(Agnode_t *n, nodeinfo_t *ninfo, int warn,
const graphviz_tred_options_t *opts) {
Agraph_t *g = agrootof(n);
Agedgepair_t dummy;
Agedge_t *link;
Agedge_t *next;
Agedge_t *prev;
Agedge_t *e;
Agedge_t *f;
Agnode_t *v;
Agnode_t *hd;
Agnode_t *oldhd;
int do_delete;
dummy.out.base.tag.objtype = AGOUTEDGE;
dummy.out.node = n;
dummy.in.base.tag.objtype = AGINEDGE;
dummy.in.node = NULL;
edge_stack_t estk = {0};
push(&estk, &dummy.out, ninfo);
prev = 0;
while ((link = top(&estk))) {
v = aghead(link);
if (prev)
next = agnxtout(g, prev);
else
next = agfstout(g, v);
for (; next; next = agnxtout(g, next)) {
hd = aghead(next);
if (hd == v)
continue; // Skip a loop
if (ON_STACK(ninfo, hd)) {
if (!warn) {
warn++;
if (opts->err != NULL) {
fprintf(
opts->err,
"warning: %s has cycle(s), transitive reduction not unique\n",
agnameof(g));
fprintf(opts->err, "cycle involves edge %s -> %s\n", agnameof(v),
agnameof(hd));
}
}
} else if (DISTANCE(ninfo, hd) == 0) {
DISTANCE(ninfo, hd) = uchar_min(1, DISTANCE(ninfo, v)) + 1;
break;
} else if (DISTANCE(ninfo, hd) == 1) {
DISTANCE(ninfo, hd) = uchar_min(1, DISTANCE(ninfo, v)) + 1;
}
}
if (next) {
push(&estk, next, ninfo);
prev = 0;
} else {
prev = pop(&estk, ninfo);
}
}
oldhd = NULL;
for (e = agfstout(g, n); e; e = f) {
do_delete = 0;
f = agnxtout(g, e);
hd = aghead(e);
if (oldhd == hd)
do_delete = 1;
else {
oldhd = hd;
if (DISTANCE(ninfo, hd) > 1)
do_delete = 1;
}
if (do_delete) {
if (opts->PrintRemovedEdges && opts->err != NULL)
fprintf(opts->err, "removed edge: %s: \"%s\" -> \"%s\"\n", agnameof(g),
agnameof(aghead(e)), agnameof(agtail(e)));
agdelete(g, e);
}
}
LIST_FREE(&estk);
return warn;
}
/* Do a DFS for each vertex in graph g, so the time
* complexity is O(|V||E|).
*/
void graphviz_tred(Agraph_t *g, const graphviz_tred_options_t *opts) {
Agnode_t *n;
int cnt = 0;
int warn = 0;
time_t secs;
time_t total_secs = 0;
nodeinfo_t *ninfo;
size_t infosize;
infosize = (agnnodes(g) + 1) * sizeof(nodeinfo_t);
ninfo = gv_alloc(infosize);
if (opts->Verbose && opts->err != NULL)
fprintf(stderr, "Processing graph %s\n", agnameof(g));
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
memset(ninfo, 0, infosize);
const time_t start = time(NULL);
warn = dfs(n, ninfo, warn, opts);
if (opts->Verbose) {
secs = time(NULL) - start;
total_secs += secs;
cnt++;
if (cnt % 1000 == 0 && opts->err != NULL) {
fprintf(opts->err, "[%d]\n", cnt);
}
}
}
if (opts->Verbose && opts->err != NULL)
fprintf(opts->err, "Finished graph %s: %lld.00 secs.\n", agnameof(g),
(long long)total_secs);
free(ninfo);
agwrite(g, opts->out);
fflush(opts->out);
}
/**
* @defgroup cgraph_app app
* @brief uncoupled application specific functions
* @ingroup cgraph
*/
|