File: blockpath.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (638 lines) | stat: -rw-r--r-- 16,631 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include	<circogen/blockpath.h>
#include	<circogen/circular.h>
#include	<circogen/edgelist.h>
#include	<stddef.h>
#include	<stdbool.h>
#include	<stdint.h>
#include	<util/agxbuf.h>
#include	<util/alloc.h>
#include	<util/list.h>

/* The code below lays out a single block on a circle.
 */

/* We use the unused fields order and to_orig in cloned nodes and edges */
#define ORIGE(e)  (ED_to_orig(e))

/* clone_graph:
 * Create two copies of the argument graph
 * One is a subgraph, the other is an actual copy since we will be
 * adding edges to it.
 *
 * @param state Context containing a counter to use for graph copy naming
 */
static Agraph_t *clone_graph(Agraph_t *ing, Agraph_t **xg, circ_state *state) {
    Agraph_t *clone;
    Agraph_t *xclone;
    Agnode_t *n;
    Agnode_t *xn;
    Agnode_t *xh;
    Agedge_t *e;
    Agedge_t *xe;
    agxbuf gname = {0};

    agxbprint(&gname, "_clone_%d", state->graphCopyCount++);
    clone = agsubg(ing, agxbuse(&gname), 1);
    agbindrec(clone, "Agraphinfo_t", sizeof(Agraphinfo_t), true);	//node custom data
    agxbprint(&gname, "_clone_%d", state->graphCopyCount++);
    xclone = agopen(agxbuse(&gname), ing->desc, NULL);
    agxbfree(&gname);
    for (n = agfstnode(ing); n; n = agnxtnode(ing, n)) {
	agsubnode(clone,n,1);
	xn = agnode(xclone, agnameof(n),1);
        agbindrec(xn, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true);	//node custom data
	CLONE(n) = xn;
    }

    for (n = agfstnode(ing); n; n = agnxtnode(ing, n)) {
	xn = CLONE(n);
	for (e = agfstout(ing, n); e; e = agnxtout(ing, e)) {
	    agsubedge(clone,e,1);
	    xh = CLONE(aghead(e));
	    xe = agedge(xclone, xn, xh, NULL, 1);
	    agbindrec(xe, "Agedgeinfo_t", sizeof(Agedgeinfo_t), true);	//node custom data
	    ORIGE(xe) = e;
	    DEGREE(xn) += 1;
	    DEGREE(xh) += 1;
	}
    }
    *xg = xclone;
    return clone;
}

typedef LIST(Agnode_t *) deglist_t;

/// comparison function for sorting nodes by degree, descending
static int cmpDegree(const void *x, const void *y) {
  Agnode_t *const *a = x;
  Agnode_t *const *b = y;
  if (DEGREE(*a) < DEGREE(*b)) {
    return 1;
  }
  if (DEGREE(*a) > DEGREE(*b)) {
    return -1;
  }
  return 0;
}

/// Add nodes to deg_list, storing them by descending degree.
static deglist_t getList(Agraph_t *g) {
    deglist_t dl = {0};
    Agnode_t *n;

    for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
	LIST_APPEND(&dl, n);
    }
    LIST_SORT(&dl, cmpDegree);
    return dl;
}

static void find_pair_edges(Agraph_t * g, Agnode_t * n, Agraph_t * outg)
{
    int edge_cnt = 0;

    const int node_degree = DEGREE(n);
    LIST(Agnode_t *) neighbors_with = {0};
    LIST(Agnode_t *) neighbors_without = {0};

    for (Agedge_t *e = agfstedge(g, n); e; e = agnxtedge(g, e, n)) {
	Agnode_t *n1 = aghead(e);
	if (n1 == n)
	    n1 = agtail(e);
	bool has_pair_edge = false;
	for (Agedge_t *ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) {
	    if (ep == e)
		continue;
	    Agnode_t *n2 = aghead(ep);
	    if (n2 == n)
		n2 = agtail(ep);
	    Agedge_t *const ex = agfindedge(g, n1, n2);
	    if (ex) {
		has_pair_edge = true;
		if ((uintptr_t)n1 < (uintptr_t)n2) { // count edge only once
		    edge_cnt++;
		    if (ORIGE(ex)) {
			agdelete(outg, ORIGE(ex));
			ORIGE(ex) = 0;	/* delete only once */
		    }
		}
	    }
	}
	if (has_pair_edge) {
	    LIST_APPEND(&neighbors_with, n1);
	} else {
	    LIST_APPEND(&neighbors_without, n1);
	}
    }

    int diff = node_degree - 1 - edge_cnt;
    if (diff > 0) {
	if ((size_t)diff < LIST_SIZE(&neighbors_without)) {
	    for (size_t mark = 0; mark + 1 < LIST_SIZE(&neighbors_without); mark += 2) {
		Agnode_t *const tp = LIST_GET(&neighbors_without, mark);
		Agnode_t *const hp = LIST_GET(&neighbors_without, mark + 1);
		agbindrec(agedge(g, tp, hp, NULL, 1), "Agedgeinfo_t", sizeof(Agedgeinfo_t), true);   // edge custom data
		DEGREE(tp)++;
		DEGREE(hp)++;
		diff--;
	    }

	    for (size_t mark = 2; diff > 0; ++mark, --diff) {
		Agnode_t *const tp = LIST_GET(&neighbors_without, 0);
		Agnode_t *const hp = LIST_GET(&neighbors_without, mark);
		agbindrec(agedge(g, tp, hp, NULL, 1), "Agedgeinfo_t", sizeof(Agedgeinfo_t), true);   // edge custom data
		DEGREE(tp)++;
		DEGREE(hp)++;
	    }
	}

	else if ((size_t)diff == LIST_SIZE(&neighbors_without)) {
	    Agnode_t *const tp =
	      LIST_IS_EMPTY(&neighbors_with) ? NULL : LIST_GET(&neighbors_with, 0);
	    for (size_t mark = 0; mark < LIST_SIZE(&neighbors_without); mark++) {
		Agnode_t *const hp = LIST_GET(&neighbors_without, mark);
		agbindrec(agedge(g, tp, hp, NULL, 1), "Agedgeinfo_t", sizeof(Agedgeinfo_t), true);	//node custom data
		if (tp != NULL) {
		    DEGREE(tp)++;
		}
		DEGREE(hp)++;
	    }
	}
    }

    LIST_FREE(&neighbors_without);
    LIST_FREE(&neighbors_with);
}

/// Create layout skeleton of ing. Why is returned graph connected?
///
/// @param state Context containing a counter to use for graph copy naming
static Agraph_t *remove_pair_edges(Agraph_t *ing, circ_state *state) {
    int nodeCount;
    Agraph_t *outg;
    Agraph_t *g;
    Agnode_t *currnode, *adjNode;
    Agedge_t *e;

    outg = clone_graph(ing, &g, state);
    nodeCount = agnnodes(g);
    deglist_t dl = getList(g);

    for (int counter = 0; counter < nodeCount - 3; ++counter) {
	currnode = LIST_IS_EMPTY(&dl) ? NULL : LIST_POP_BACK(&dl);

	/* Remove all adjacent nodes since they have to be reinserted */
	for (e = agfstedge(g, currnode); e; e = agnxtedge(g, e, currnode)) {
	    adjNode = aghead(e);
	    if (currnode == adjNode)
		adjNode = agtail(e);
	    LIST_REMOVE(&dl, adjNode);
	}

	find_pair_edges(g, currnode, outg);

	for (e = agfstedge(g, currnode); e; e = agnxtedge(g, e, currnode)) {
	    adjNode = aghead(e);
	    if (currnode == adjNode)
		adjNode = agtail(e);

	    DEGREE(adjNode)--;
	    LIST_APPEND(&dl, adjNode);
	}
	LIST_SORT(&dl, cmpDegree);

	agdelete(g, currnode);
    }

    agclose(g);
    LIST_FREE(&dl);
    return outg;
}

static void
measure_distance(Agnode_t * n, Agnode_t * ancestor, int dist,
		 Agnode_t * change)
{
    Agnode_t *parent;

    parent = TPARENT(ancestor);
    if (parent == NULL)
	return;

    dist++;

    /* check parent to see if it has other leaf paths at greater distance
       than the context node.
       set the path/distance of the leaf at this ancestor node */

    if (DISTONE(parent) == 0) {
	LEAFONE(parent) = n;
	DISTONE(parent) = dist;
    } else if (dist > DISTONE(parent)) {
	if (LEAFONE(parent) != change) {
	    if (!DISTTWO(parent) || LEAFTWO(parent) != change)
		change = LEAFONE(parent);
	    LEAFTWO(parent) = LEAFONE(parent);
	    DISTTWO(parent) = DISTONE(parent);
	}
	LEAFONE(parent) = n;
	DISTONE(parent) = dist;
    } else if (dist > DISTTWO(parent)) {
	LEAFTWO(parent) = n;
	DISTTWO(parent) = dist;
	return;
    } else
	return;

    measure_distance(n, parent, dist, change);
}

/// Find and return longest path in tree.
static nodelist_t find_longest_path(Agraph_t *tree) {
    Agnode_t *n;
    Agedge_t *e;
    Agnode_t *common = 0;
    int maxlength = 0;
    int length;

    if (agnnodes(tree) == 1) {
	nodelist_t beginPath = {0};
	n = agfstnode(tree);
	LIST_APPEND(&beginPath, n);
	SET_ONPATH(n);
	return beginPath;
    }

    for (n = agfstnode(tree); n; n = agnxtnode(tree, n)) {
	int count = 0;
	for (e = agfstedge(tree, n); e; e = agnxtedge(tree, e, n)) {
	    count++;
	}
	if (count == 1)
	    measure_distance(n, n, 0, NULL);
    }

    /* find the branch node rooted at the longest path */
    for (n = agfstnode(tree); n; n = agnxtnode(tree, n)) {
	length = DISTONE(n) + DISTTWO(n);
	if (length > maxlength) {
	    common = n;
	    maxlength = length;
	}
    }

    nodelist_t beginPath = {0};
    for (n = LEAFONE(common); n != common; n = TPARENT(n)) {
	LIST_APPEND(&beginPath, n);
	SET_ONPATH(n);
    }
    LIST_APPEND(&beginPath, common);
    SET_ONPATH(common);

    if (DISTTWO(common)) {	/* 2nd path might be empty */
	nodelist_t endPath = {0};
	for (n = LEAFTWO(common); n != common; n = TPARENT(n)) {
	    LIST_APPEND(&endPath, n);
	    SET_ONPATH(n);
	}
	reverseAppend(&beginPath, &endPath);
    }

    return beginPath;
}

/// Simple depth first search, adding traversed edges to tree.
static void dfs(Agraph_t * g, Agnode_t * n, Agraph_t * tree)
{
    Agedge_t *e;
    Agnode_t *neighbor;

    SET_VISITED(n);
    for (e = agfstedge(g, n); e; e = agnxtedge(g, e, n)) {
	neighbor = aghead(e);
	if (neighbor == n)
	    neighbor = agtail(e);

	if (!VISITED(neighbor)) {
	    /* add the edge to the dfs tree */
	    agsubedge(tree,e,1);
	    TPARENT(neighbor) = n;
	    dfs(g, neighbor, tree);
	}
    }
}

/// Construct spanning forest of g as subgraph
///
/// @param state Context containing a counter to use for spanning tree naming
static Agraph_t *spanning_tree(Agraph_t *g, circ_state *state) {
    Agnode_t *n;
    Agraph_t *tree;
    agxbuf gname = {0};

    agxbprint(&gname, "_span_%d", state->spanningTreeCount++);
    tree = agsubg(g, agxbuse(&gname), 1);
    agxbfree(&gname);
    agbindrec(tree, "Agraphinfo_t", sizeof(Agraphinfo_t), true);	//node custom data

    for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
	agsubnode(tree,n,1);
	DISTONE(n) = 0;
	DISTTWO(n) = 0;
	UNSET_VISITED(n);
    }

    for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
	if (!VISITED(n)) {
	    TPARENT(n) = NULL;
	    dfs(g, n, tree);
	}
    }

    return tree;
}

/// Add induced edges.
static void block_graph(Agraph_t * g, block_t * sn)
{
    Agnode_t *n;
    Agedge_t *e;
    Agraph_t *subg = sn->sub_graph;

    for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) {
	for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
	    if (BLOCK(aghead(e)) == sn)
		agsubedge(subg,e,1);
	}
    }
}

static int count_all_crossings(nodelist_t * list, Agraph_t * subg)
{
    edgelist *openEdgeList = init_edgelist();
    Agnode_t *n;
    Agedge_t *e;
    int crossings = 0;
    int order = 1;

    for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) {
	for (e = agfstout(subg, n); e; e = agnxtout(subg, e)) {
	    EDGEORDER(e) = 0;
	}
    }

    for (size_t item = 0; item < LIST_SIZE(list); ++item) {
	n = LIST_GET(list, item);

	for (e = agfstedge(subg, n); e; e = agnxtedge(subg, e, n)) {
	    if (EDGEORDER(e) > 0) {
		edgelistitem *eitem;
		Agedge_t *ep;

		for (eitem = dtfirst(openEdgeList); eitem;
		     eitem = dtnext(openEdgeList, eitem)) {
		    ep = eitem->edge;
		    if (EDGEORDER(ep) > EDGEORDER(e)) {
			if (aghead(ep) != n && agtail(ep) != n)
			    crossings++;
		    }
		}
		remove_edge(openEdgeList, e);
	    }
	}

	for (e = agfstedge(subg, n); e; e = agnxtedge(subg, e, n)) {
	    if (EDGEORDER(e) == 0) {
		EDGEORDER(e) = order;
		add_edge(openEdgeList, e);
	    }
	}
	order++;
    }

    free_edgelist(openEdgeList);
    return crossings;
}

#define CROSS_ITER 10

/* Attempt to reduce edge crossings by moving nodes.
 * Original crossing count is in cnt; final count is returned there.
 * list is the original list; return the best list found.
 */
static nodelist_t reduce(nodelist_t list, Agraph_t *subg, int *cnt) {
    Agnode_t *curnode;
    Agedge_t *e;
    Agnode_t *neighbor;
    int crossings, j, newCrossings;

    crossings = *cnt;
    for (curnode = agfstnode(subg); curnode;
	 curnode = agnxtnode(subg, curnode)) {
	/*  move curnode next to its neighbors */
	for (e = agfstedge(subg, curnode); e;
	     e = agnxtedge(subg, e, curnode)) {
	    neighbor = agtail(e);
	    if (neighbor == curnode)
		neighbor = aghead(e);

	    for (j = 0; j < 2; j++) {
		nodelist_t listCopy;
		LIST_COPY(&listCopy, &list);
		insertNodelist(&list, curnode, neighbor, j);
		newCrossings = count_all_crossings(&list, subg);
		if (newCrossings < crossings) {
		    crossings = newCrossings;
		    LIST_FREE(&listCopy);
		    if (crossings == 0) {
			*cnt = 0;
			return list;
		    }
		} else {
		    LIST_FREE(&list);
		    list = listCopy;
		}
	    }
	}
    }
    *cnt = crossings;
    return list;
}

static nodelist_t reduce_edge_crossings(nodelist_t list, Agraph_t *subg) {
    int i, crossings, origCrossings;

    crossings = count_all_crossings(&list, subg);
    if (crossings == 0)
	return list;

    for (i = 0; i < CROSS_ITER; i++) {
	origCrossings = crossings;
	list = reduce(list, subg, &crossings);
	/* return if no crossings or no improvement */
	if (origCrossings == crossings || crossings == 0)
	    return list;
    }
    return list;
}

/// Return max dimension of nodes on list
static double largest_nodesize(nodelist_t * list)
{
    double size = 0;

    for (size_t item = 0; item < LIST_SIZE(list); ++item) {
	Agnode_t *n = ORIGN(LIST_GET(list, item));
	if (ND_width(n) > size)
	    size = ND_width(n);
	if (ND_height(n) > size)
	    size = ND_height(n);
    }
    return size;
}

/// Add n to list. By construction, n is not in list at start.
static void place_node(Agraph_t * g, Agnode_t * n, nodelist_t * list)
{
    Agedge_t *e;
    bool placed = false;
    nodelist_t neighbors = {0};

    for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
	LIST_APPEND(&neighbors, aghead(e));
	SET_NEIGHBOR(aghead(e));
    }
    for (e = agfstin(g, n); e; e = agnxtin(g, e)) {
	LIST_APPEND(&neighbors, agtail(e));
	SET_NEIGHBOR(agtail(e));
    }

    /* Look for 2 neighbors consecutive on list */
    if (LIST_SIZE(&neighbors) >= 2) {
	for (size_t one = 0; one < LIST_SIZE(list); ++one) {
	    const size_t two = (one + 1) % LIST_SIZE(list);

	    if (NEIGHBOR(LIST_GET(list, one)) && NEIGHBOR(LIST_GET(list, two))) {
		appendNodelist(list, one + 1, n);
		placed = true;
		break;
	    }
	}
    }

    /* Find any neighbor on list */
    if (!placed && !LIST_IS_EMPTY(&neighbors)) {
	for (size_t one = 0; one < LIST_SIZE(list); ++one) {
	    if (NEIGHBOR(LIST_GET(list, one))) {
		appendNodelist(list, one + 1, n);
		placed = true;
		break;
	    }
	}
    }

    if (!placed)
	LIST_APPEND(list, n);

    for (size_t one = 0; one < LIST_SIZE(&neighbors); ++one)
	UNSET_NEIGHBOR(LIST_GET(&neighbors, one));
    LIST_FREE(&neighbors);
}

/// Add nodes not in list to list.
static void place_residual_nodes(Agraph_t * g, nodelist_t * list)
{
    Agnode_t *n;

    for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
	if (!ONPATH(n))
	    place_node(g, n, list);
    }
}

/// @param state Context containing a counter to use for graph copy naming
nodelist_t layout_block(Agraph_t *g, block_t *sn, double min_dist,
                        circ_state *state) {
    Agraph_t *copyG, *tree, *subg;
    int k;
    double theta, radius;

    subg = sn->sub_graph;
    block_graph(g, sn);		/* add induced edges */

    copyG = remove_pair_edges(subg, state);

    tree = spanning_tree(copyG, state);
    nodelist_t longest_path = find_longest_path(tree);
    place_residual_nodes(subg, &longest_path);
    /* at this point, longest_path is a list of all nodes in the block */

    /* apply crossing reduction algorithms here */
    longest_path = reduce_edge_crossings(longest_path, subg);

    size_t N = LIST_SIZE(&longest_path);
    const double largest_node = largest_nodesize(&longest_path);
    /* N*(min_dist+largest_node) is roughly circumference of required circle */
    if (N == 1)
	radius = 0;
    else
	radius = (double)N * (min_dist + largest_node) / (2 * M_PI);

    for (size_t item = 0; item < LIST_SIZE(&longest_path); ++item) {
	Agnode_t *n = LIST_GET(&longest_path, item);
	if (ISPARENT(n)) {
	    /* QUESTION: Why is only one parent realigned? */
	    realignNodelist(&longest_path, item);
	    break;
	}
    }

    k = 0;
    for (size_t item = 0; item < LIST_SIZE(&longest_path); ++item) {
	Agnode_t *n = LIST_GET(&longest_path, item);
	POSITION(n) = k;
	PSI(n) = 0.0;
	theta = k * (2.0 * M_PI / (double)N);

	ND_pos(n)[0] = radius * cos(theta);
	ND_pos(n)[1] = radius * sin(theta);

	k++;
    }

    if (N == 1)
	sn->radius = largest_node / 2;
    else
	sn->radius = radius;
    sn->rad0 = sn->radius;

    /* initialize parent pos */
    sn->parent_pos = -1;

    agclose(copyG);
    return longest_path;
}

#ifdef DEBUG
void prTree(Agraph_t * g)
{
    Agnode_t *n;

    for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
	if (TPARENT(n)) {
			fprintf(stderr, "%s ", agnameof(n));
			fprintf(stderr, "-> %s\n", agnameof(TPARENT(n)));
		}
    }
}
#endif