1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <circogen/blocktree.h>
#include <stdbool.h>
#include <util/agxbuf.h>
#include <util/debug.h>
#include <util/gv_math.h>
#include <util/list.h>
static void addNode(block_t * bp, Agnode_t * n)
{
agsubnode(bp->sub_graph, n,1);
BLOCK(n) = bp;
}
static Agraph_t *makeBlockGraph(Agraph_t * g, circ_state * state)
{
agxbuf name = {0};
agxbprint(&name, "_block_%d", state->blockCount++);
Agraph_t *subg = agsubg(g, agxbuse(&name), 1);
agxbfree(&name);
agbindrec(subg, "Agraphinfo_t", sizeof(Agraphinfo_t), true); //node custom data
return subg;
}
static block_t *makeBlock(Agraph_t * g, circ_state * state)
{
Agraph_t *subg = makeBlockGraph(g, state);
block_t *bp = mkBlock(subg);
return bp;
}
typedef LIST(Agedge_t *) estack_t;
/* Current scheme adds articulation point to first non-trivial child
* block. If none exists, it will be added to its parent's block, if
* non-trivial, or else given its own block.
*
* FIX:
* This should be modified to:
* - allow user to specify which block gets a node, perhaps on per-node basis.
* - if an articulation point is not used in one of its non-trivial blocks,
* dummy edges should be added to preserve biconnectivity
* - turn on user-supplied blocks.
* - Post-process to move articulation point to largest block
*/
static void dfs(Agraph_t *g, Agnode_t *u, circ_state *state, bool isRoot,
estack_t *stk) {
LOWVAL(u) = VAL(u) = state->orderCount++;
for (Agedge_t *e = agfstedge(g, u); e; e = agnxtedge(g, e, u)) {
Agnode_t *v = aghead (e);
if (v == u) {
v = agtail(e);
if (!EDGEORDER(e)) EDGEORDER(e) = -1;
}
else {
if (!EDGEORDER(e)) EDGEORDER(e) = 1;
}
if (VAL(v) == 0) { /* Since VAL(root) == 0, it gets treated as artificial cut point */
PARENT(v) = u;
LIST_PUSH_BACK(stk, e);
dfs(g, v, state, false, stk);
LOWVAL(u) = imin(LOWVAL(u), LOWVAL(v));
if (LOWVAL(v) >= VAL(u)) { /* u is an articulation point */
block_t *block = NULL;
Agnode_t *np;
Agedge_t *ep;
do {
ep = LIST_POP_BACK(stk);
if (EDGEORDER(ep) == 1)
np = aghead (ep);
else
np = agtail (ep);
if (!BLOCK(np)) {
if (!block)
block = makeBlock(g, state);
addNode(block, np);
}
} while (ep != e);
if (block) { /* If block != NULL, it's not empty */
if (!BLOCK(u) && blockSize (block) > 1)
addNode(block, u);
if (isRoot && BLOCK(u) == block)
insertBlock(&state->bl, block);
else
appendBlock(&state->bl, block);
}
}
} else if (PARENT(u) != v) {
LOWVAL(u) = imin(LOWVAL(u), VAL(v));
}
}
if (isRoot && !BLOCK(u)) {
block_t *block = makeBlock(g, state);
addNode(block, u);
insertBlock(&state->bl, block);
}
}
static void find_blocks(Agraph_t * g, circ_state * state)
{
Agnode_t *root = NULL;
/* check to see if there is a node which is set to be the root
*/
if (state->rootname) {
root = agfindnode(g, state->rootname);
}
if (!root && state->N_root) {
for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
if (late_bool(ORIGN(n), state->N_root, false)) {
root = n;
break;
}
}
}
if (!root)
root = agfstnode(g);
GV_DEBUG("root = %s", agnameof(root));
estack_t stk = {0};
dfs(g, root, state, true, &stk);
LIST_FREE(&stk);
}
/* Construct block tree by peeling nodes from block list in state.
* When done, return root. The block list is empty
* FIX: use largest block as root
*/
block_t *createBlocktree(Agraph_t * g, circ_state * state)
{
block_t *next;
find_blocks(g, state);
block_t *bp = state->bl.first; // if root chosen, will be first
/* Otherwise, just pick first as root */
block_t *root = bp;
/* Find node with minimum VAL value to find parent block */
/* FIX: Should be some way to avoid search below. */
for (bp = bp->next; bp; bp = next) {
Agnode_t *n;
Agnode_t *parent;
Agnode_t *child;
Agraph_t *subg = bp->sub_graph;
child = n = agfstnode(subg);
int min = VAL(n);
parent = PARENT(n);
for (n = agnxtnode(subg, n); n; n = agnxtnode(subg, n)) {
if (VAL(n) < min) {
child = n;
min = VAL(n);
parent = PARENT(n);
}
}
SET_PARENT(parent);
CHILD(bp) = child;
next = bp->next; /* save next since list insertion destroys it */
appendBlock(&BLOCK(parent)->children, bp);
}
initBlocklist(&state->bl); /* zero out list */
return root;
}
void freeBlocktree(block_t * bp)
{
for (block_t *child = bp->children.first, *next; child; child = next) {
next = child->next;
freeBlocktree(child);
}
freeBlock(bp);
}
#ifdef DEBUG
static void indent(int i)
{
while (i--)
fputs(" ", stderr);
}
void print_blocktree(block_t * sn, int depth)
{
indent(depth);
Agraph_t *g = sn->sub_graph;
fprintf(stderr, "%s:", agnameof(g));
for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
fprintf(stderr, " %s", agnameof(n));
}
fputs("\n", stderr);
depth++;
for (block_t *child = sn->children.first; child; child = child->next) {
print_blocktree(child, depth);
}
}
#endif
|