1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include "config.h"
/* TODO:
* If cut point is in exactly 2 blocks, expand block circles to overlap
* especially in the case where one block is the sole child of the other.
*/
#include <circogen/blockpath.h>
#include <circogen/circpos.h>
#include <circogen/nodelist.h>
#include <math.h>
#include <stddef.h>
#include <util/alloc.h>
#include <util/list.h>
/* The function determines how much the block should be rotated
* for best positioning with parent, assuming its center is at x and y
* relative to the parent.
* angle gives the angle of the new position, i.e., tan(angle) = y/x.
* If sn has 2 nodes, we arrange the line of the 2 normal to angle.
* If sn has 1 node, parent_pos has already been set to the
* correct angle assuming no rotation.
* Otherwise, we find the node in sn connected to the parent and rotate
* the block so that it is closer or at least visible to its node in the
* parent.
*
* For COALESCED blocks, if neighbor is in left half plane,
* use unCOALESCED case.
* Else let theta be angle, R = LEN(x,y), pho the radius of actual
* child block, phi be angle of neighbor in actual child block,
* and r the distance from center of coalesced block to center of
* actual block. Then, the angle to rotate the coalesced block to
* that the edge from the parent is tangent to the neighbor on the
* actual child block circle is
* alpha = theta + M_PI/2 - phi - arcsin((l/R)*(sin B))
* where l = r - rho/(cos phi) and beta = M_PI/2 + phi.
* Thus,
* alpha = theta + M_PI/2 - phi - arcsin((l/R)*(cos phi))
*/
static double getRotation(block_t *sn, double x, double y, double theta) {
double mindist2;
Agraph_t *subg;
Agnode_t *n, *closest_node, *neighbor;
double len2, newX, newY;
subg = sn->sub_graph;
nodelist_t *list = &sn->circle_list;
if (sn->parent_pos >= 0) {
theta += M_PI - sn->parent_pos;
if (theta < 0)
theta += 2 * M_PI;
return theta;
}
size_t count = LIST_SIZE(list);
if (count == 2) {
return theta - M_PI / 2.0;
}
/* Find node in block connected to block's parent */
neighbor = CHILD(sn);
newX = ND_pos(neighbor)[0] + x;
newY = ND_pos(neighbor)[1] + y;
mindist2 = LEN2(newX, newY); /* save sqrts by using sqr of dist to find min */
closest_node = neighbor;
for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) {
if (n == neighbor)
continue;
newX = ND_pos(n)[0] + x;
newY = ND_pos(n)[1] + y;
len2 = LEN2(newX, newY);
if (len2 < mindist2) {
mindist2 = len2;
closest_node = n;
}
}
if (neighbor != closest_node) {
double rho = sn->rad0;
double r = sn->radius - rho;
double n_x = ND_pos(neighbor)[0];
if (COALESCED(sn) && -r < n_x) {
const double R = hypot(x, y);
double n_y = ND_pos(neighbor)[1];
double phi = atan2(n_y, n_x + r);
double l = r - rho / cos(phi);
theta += M_PI / 2.0 - phi - asin(l / R * cos(phi));
} else { /* Origin still at center of this block */
double phi = atan2(ND_pos(neighbor)[1], ND_pos(neighbor)[0]);
theta += M_PI - phi - PSI(neighbor);
if (theta > 2 * M_PI)
theta -= 2 * M_PI;
}
} else
theta = 0;
return theta;
}
/* Recursively apply rotation rotate followed by translation (x,y)
* to block sn and its children.
*/
static void applyDelta(block_t * sn, double x, double y, double rotate)
{
block_t *child;
Agraph_t *subg;
Agnode_t *n;
subg = sn->sub_graph;
for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) {
const double tmpX = ND_pos(n)[0];
const double tmpY = ND_pos(n)[1];
const double cosR = cos(rotate);
const double sinR = sin(rotate);
const double X = tmpX * cosR - tmpY * sinR;
const double Y = tmpX * sinR + tmpY * cosR;
/* translate */
ND_pos(n)[0] = X + x;
ND_pos(n)[1] = Y + y;
}
for (child = sn->children.first; child; child = child->next)
applyDelta(child, x, y, rotate);
}
/* firstangle and lastangle give the range of child angles.
* These are set and used only when a block has just 1 node.
* And are used to give the center angle between the two extremes.
* The parent will then be attached at PI - center angle (parent_pos).
* If this block has no children, this is PI. Otherwise, positionChildren will
* be called once with the blocks node. firstangle will be 0, with
* succeeding angles increasing.
* position can always return the center angle - PI, since the block
* must have children and if the block has 1 node, the limits will be
* correctly set. If the block has more than 1 node, the value is
* unused.
*/
typedef struct {
double radius; /* Basic radius of block */
double subtreeR; /* Max of subtree radii */
double nodeAngle; /* Angle allocated to each node in block */
double firstAngle; /* Smallest child angle when block has 1 node */
double lastAngle; /* Largest child angle when block has 1 node */
block_t *cp; /* Children of block */
node_t *neighbor; /* Node connected to parent block, if any */
} posstate;
typedef struct {
Agnode_t* n;
double theta; /* angle of node */
double minRadius; /* minimum radius for child circle */
double maxRadius; /* maximum radius of child blocks */
double diameter; /* length of arc needed for child blocks */
double scale; /* scale factor to increase minRadius to parents' children don't overlap */
int childCount; /* no. of child blocks attached at n */
} posinfo_t;
/// get size info for blocks attached to the given node.
static double
getInfo (posinfo_t* pi, posstate * stp, double min_dist)
{
block_t *child;
double maxRadius = 0; /* Max. radius of children */
double diameter = 0; /* sum of child diameters */
int childCount = 0;
for (child = stp->cp; child; child = child->next) {
if (BLK_PARENT(child) == pi->n) {
childCount++;
maxRadius = fmax(maxRadius, child->radius);
diameter += 2 * child->radius + min_dist;
}
}
pi->diameter = diameter;
pi->childCount = childCount;
pi->minRadius = stp->radius + min_dist + maxRadius;
pi->maxRadius = maxRadius;
return maxRadius;
}
static void
setInfo (posinfo_t* p0, posinfo_t* p1, double delta)
{
double t = p0->diameter * p1->minRadius + p1->diameter * p0->minRadius;
t /= 2*delta*p0->minRadius*p1->minRadius;
t = fmax(t, 1);
p0->scale = fmax(p0->scale, t);
p1->scale = fmax(p1->scale, t);
}
static void positionChildren(posinfo_t *info, posstate *stp, size_t length,
double min_dist) {
block_t *child;
double childAngle, childRadius, incidentAngle;
double mindistAngle, rotateAngle, midAngle = 0.0;
int midChild, cnt = 0;
double snRadius = stp->subtreeR; /* max subtree radius */
double firstAngle = stp->firstAngle;
double lastAngle = stp->lastAngle;
double d, deltaX, deltaY;
childRadius = info->scale * info->minRadius;
if (length == 1) {
childAngle = 0;
d = info->diameter / (2 * M_PI);
childRadius = fmax(childRadius, d);
d = 2 * M_PI * childRadius - info->diameter;
if (d > 0)
min_dist += d / info->childCount;
}
else
childAngle = info->theta - info->diameter / (2 * childRadius);
snRadius = fmax(snRadius, childRadius + info->maxRadius);
mindistAngle = min_dist / childRadius;
midChild = (info->childCount + 1) / 2;
for (child = stp->cp; child; child = child->next) {
if (BLK_PARENT(child) != info->n)
continue;
if (LIST_IS_EMPTY(&child->circle_list))
continue;
incidentAngle = child->radius / childRadius;
if (length == 1) {
if (childAngle != 0) {
if (info->childCount == 2)
childAngle = M_PI;
else
childAngle += incidentAngle;
}
if (firstAngle < 0)
firstAngle = childAngle;
lastAngle = childAngle;
} else {
if (info->childCount == 1) {
childAngle = info->theta;
} else {
childAngle += incidentAngle + mindistAngle / 2;
}
}
deltaX = childRadius * cos(childAngle);
deltaY = childRadius * sin(childAngle);
/* first apply the delta to the immediate child and see if we need
* to rotate it for better edge link
* should return the theta value if there was a rotation else zero
*/
rotateAngle = getRotation(child, deltaX, deltaY, childAngle);
applyDelta(child, deltaX, deltaY, rotateAngle);
if (length == 1) {
childAngle += incidentAngle + mindistAngle;
} else {
childAngle += incidentAngle + mindistAngle / 2;
}
cnt++;
if (cnt == midChild)
midAngle = childAngle;
}
if (length > 1 && info->n == stp->neighbor) {
PSI(info->n) = midAngle;
}
stp->subtreeR = snRadius;
stp->firstAngle = firstAngle;
stp->lastAngle = lastAngle;
}
/* Assume childCount > 0
* For each node in the block with children, getInfo is called, with the
* information stored in the parents array.
* This information is used by setInfo to compute the amount of space allocated
* to each parent and the radius at which to place its children.
* Finally, positionChildren is called to do the actual positioning.
* If length is 1, keeps track of minimum and maximum child angle.
*/
static double position(size_t childCount, size_t length, nodelist_t *nodepath,
block_t * sn, double min_dist)
{
posstate state;
int i, counter = 0;
double maxRadius = 0.0;
double angle;
double theta = 0.0;
posinfo_t* parents = gv_calloc(childCount, sizeof(posinfo_t));
int num_parents = 0;
posinfo_t* next;
posinfo_t* curr;
double delta;
state.cp = sn->children.first;
state.subtreeR = sn->radius;
state.radius = sn->radius;
state.neighbor = CHILD(sn);
state.nodeAngle = 2 * M_PI / (double)length;
state.firstAngle = -1;
state.lastAngle = -1;
for (size_t item = 0; item < LIST_SIZE(nodepath); ++item) {
Agnode_t *n = LIST_GET(nodepath, item);
theta = counter * state.nodeAngle;
counter++;
if (ISPARENT(n)) {
parents[num_parents].n = n;
parents[num_parents].theta = theta;
maxRadius = getInfo (parents+num_parents, &state, min_dist);
num_parents++;
}
}
if (num_parents == 1)
parents->scale = 1.0;
else if (num_parents == 2) {
curr = parents;
next = parents+1;
delta = next->theta - curr->theta;
if (delta > M_PI)
delta = 2*M_PI - delta;
setInfo (curr, next, delta);
}
else {
curr = parents;
for (i = 0; i < num_parents; i++) {
if (i+1 == num_parents) {
next = parents;
delta = next->theta - curr->theta + 2*M_PI;
}
else {
next = curr+1;
delta = next->theta - curr->theta;
}
setInfo (curr, next, delta);
curr++;
}
}
for (i = 0; i < num_parents; i++) {
positionChildren(parents + i, &state, length, min_dist);
}
free (parents);
/* If block has only 1 child, to save space, we coalesce it with the
* child. Instead of having final radius sn->radius + max child radius,
* we have half that. However, the origin of the block is no longer in
* the center of the block, so we cannot do a simple rotation to get
* the neighbor node next to the parent block in getRotate.
*/
if (childCount == 1) {
applyDelta(sn, -(maxRadius + min_dist / 2), 0, 0);
sn->radius += min_dist / 2 + maxRadius;
SET_COALESCED(sn);
} else
sn->radius = state.subtreeR;
angle = (state.firstAngle + state.lastAngle) / 2.0 - M_PI;
return angle;
}
/// Set positions of block sn and its child blocks.
///
/// @param state Context containing a counter to use for graph copy naming
static void doBlock(Agraph_t *g, block_t *sn, double min_dist,
circ_state *state) {
block_t *child;
double centerAngle = M_PI;
/* layout child subtrees */
size_t childCount = 0;
for (child = sn->children.first; child; child = child->next) {
doBlock(g, child, min_dist, state);
childCount++;
}
/* layout this block */
nodelist_t longest_path = layout_block(g, sn, min_dist, state);
sn->circle_list = longest_path;
size_t length = LIST_SIZE(&longest_path); // path contains everything in block
/* attach children */
if (childCount > 0)
centerAngle = position(childCount, length, &longest_path, sn, min_dist);
if (length == 1 && BLK_PARENT(sn)) {
sn->parent_pos = centerAngle;
if (sn->parent_pos < 0)
sn->parent_pos += 2 * M_PI;
}
}
void circPos(Agraph_t * g, block_t * sn, circ_state * state)
{
doBlock(g, sn, state->min_dist, state);
}
|