1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
|
/// @file
/// @brief [edge arrow shapes](https://graphviz.org/doc/info/arrows.html)
/// @ingroup common_render
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <assert.h>
#include <common/geomprocs.h>
#include <common/render.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <util/startswith.h>
#include <util/streq.h>
#define EPSILON .0001
/* standard arrow length in points */
#define ARROW_LENGTH 10.
#define NUMB_OF_ARROW_HEADS 4
/* each arrow in 8 bits. Room for NUMB_OF_ARROW_HEADS arrows in 32 bit int. */
#define BITS_PER_ARROW 8
#define BITS_PER_ARROW_TYPE 4
/* arrow types (in BITS_PER_ARROW_TYPE bits) */
#define ARR_TYPE_NONE (ARR_NONE)
#define ARR_TYPE_NORM 1
#define ARR_TYPE_CROW 2
#define ARR_TYPE_TEE 3
#define ARR_TYPE_BOX 4
#define ARR_TYPE_DIAMOND 5
#define ARR_TYPE_DOT 6
#define ARR_TYPE_CURVE 7
#define ARR_TYPE_GAP 8
/* Spare: 9-15 */
/* arrow mods (in (BITS_PER_ARROW - BITS_PER_ARROW_TYPE) bits) */
#define ARR_MOD_OPEN (1<<(BITS_PER_ARROW_TYPE+0))
#define ARR_MOD_INV (1<<(BITS_PER_ARROW_TYPE+1))
#define ARR_MOD_LEFT (1<<(BITS_PER_ARROW_TYPE+2))
#define ARR_MOD_RIGHT (1<<(BITS_PER_ARROW_TYPE+3))
/* No spares */
typedef struct {
char *dir;
uint32_t sflag;
uint32_t eflag;
} arrowdir_t;
static const arrowdir_t Arrowdirs[] = {
{"forward", ARR_TYPE_NONE, ARR_TYPE_NORM},
{"back", ARR_TYPE_NORM, ARR_TYPE_NONE},
{"both", ARR_TYPE_NORM, ARR_TYPE_NORM},
{"none", ARR_TYPE_NONE, ARR_TYPE_NONE},
{0}
};
typedef struct {
char *name;
uint32_t type;
} arrowname_t;
static const arrowname_t Arrowsynonyms[] = {
/* synonyms for deprecated arrow names - included for backward compatibility */
/* evaluated before primary names else "invempty" would give different results */
{"invempty", (ARR_TYPE_NORM | ARR_MOD_INV | ARR_MOD_OPEN)}, /* oinv */
{0}
};
static const arrowname_t Arrowmods[] = {
{"o", ARR_MOD_OPEN},
{"r", ARR_MOD_RIGHT},
{"l", ARR_MOD_LEFT},
/* deprecated alternates for backward compat */
{"e", ARR_MOD_OPEN}, /* o - needed for "ediamond" */
{"half", ARR_MOD_LEFT}, /* l - needed for "halfopen" */
{0}
};
static const arrowname_t Arrownames[] = {
{"normal", ARR_TYPE_NORM},
{"crow", ARR_TYPE_CROW},
{"tee", ARR_TYPE_TEE},
{"box", ARR_TYPE_BOX},
{"diamond", ARR_TYPE_DIAMOND},
{"dot", ARR_TYPE_DOT},
{"none", ARR_TYPE_GAP},
/* ARR_MOD_INV is used only here to define two additional shapes
since not all types can use it */
{"inv", (ARR_TYPE_NORM | ARR_MOD_INV)},
{"vee", (ARR_TYPE_CROW | ARR_MOD_INV)},
/* WARNING ugly kludge to deal with "o" v "open" conflict */
/* Define "open" as just "pen" since "o" already taken as ARR_MOD_OPEN */
/* Note that ARR_MOD_OPEN has no meaning for ARR_TYPE_CROW shape */
{"pen", (ARR_TYPE_CROW | ARR_MOD_INV)},
/* WARNING ugly kludge to deal with "e" v "empty" conflict */
/* Define "empty" as just "mpty" since "e" already taken as ARR_MOD_OPEN */
/* Note that ARR_MOD_OPEN has expected meaning for ARR_TYPE_NORM shape */
{"mpty", ARR_TYPE_NORM},
{"curve", ARR_TYPE_CURVE},
{"icurve", (ARR_TYPE_CURVE | ARR_MOD_INV)},
{0}
};
typedef struct {
uint32_t type;
double lenfact; /* ratio of length of this arrow type to standard arrow */
pointf (*gen)(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag); ///< generator function for
///< type
double (*len)(double lenfact, double arrowsize, double penwidth,
uint32_t flag); ///< penwidth dependent length
} arrowtype_t;
/* forward declaration of functions used in Arrowtypes[] */
static pointf arrow_type_normal(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static pointf arrow_type_crow(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static pointf arrow_type_tee(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static pointf arrow_type_box(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static pointf arrow_type_diamond(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static pointf arrow_type_dot(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static pointf arrow_type_curve(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static pointf arrow_type_gap(GVJ_t * job, pointf p, pointf u, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_generic(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_crow(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_normal(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_tee(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_box(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_diamond(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_curve(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static double arrow_length_dot(double lenfact, double arrowsize, double penwidth, uint32_t flag);
static const arrowtype_t Arrowtypes[] = {
{ARR_TYPE_NORM, 1.0, arrow_type_normal, arrow_length_normal},
{ARR_TYPE_CROW, 1.0, arrow_type_crow, arrow_length_crow},
{ARR_TYPE_TEE, 0.5, arrow_type_tee, arrow_length_tee},
{ARR_TYPE_BOX, 1.0, arrow_type_box, arrow_length_box},
{ARR_TYPE_DIAMOND, 1.2, arrow_type_diamond, arrow_length_diamond},
{ARR_TYPE_DOT, 0.8, arrow_type_dot, arrow_length_dot},
{ARR_TYPE_CURVE, 1.0, arrow_type_curve, arrow_length_curve},
{ARR_TYPE_GAP, 0.5, arrow_type_gap, arrow_length_generic},
};
static const size_t Arrowtypes_size =
sizeof(Arrowtypes) / sizeof(Arrowtypes[0]);
static char *arrow_match_name_frag(char *name, const arrowname_t *arrownames,
uint32_t *flag) {
size_t namelen = 0;
char *rest = name;
for (const arrowname_t *arrowname = arrownames; arrowname->name;
arrowname++) {
namelen = strlen(arrowname->name);
if (startswith(name, arrowname->name)) {
*flag |= arrowname->type;
rest += namelen;
break;
}
}
return rest;
}
static char *arrow_match_shape(char *name, uint32_t *flag) {
char *next, *rest;
uint32_t f = ARR_TYPE_NONE;
rest = arrow_match_name_frag(name, Arrowsynonyms, &f);
if (rest == name) {
do {
next = rest;
rest = arrow_match_name_frag(next, Arrowmods, &f);
} while (next != rest);
rest = arrow_match_name_frag(rest, Arrownames, &f);
}
if (f && !(f & ((1 << BITS_PER_ARROW_TYPE) - 1)))
f |= ARR_TYPE_NORM;
*flag = f;
return rest;
}
static void arrow_match_name(char *name, uint32_t *flag) {
char *rest = name;
char *next;
int i;
*flag = 0;
for (i = 0; *rest != '\0' && i < NUMB_OF_ARROW_HEADS; ) {
uint32_t f = ARR_TYPE_NONE;
next = rest;
rest = arrow_match_shape(next, &f);
if (f == ARR_TYPE_NONE) {
agwarningf("Arrow type \"%s\" unknown - ignoring\n", next);
return;
}
if (f == ARR_TYPE_GAP && i == NUMB_OF_ARROW_HEADS - 1)
f = ARR_TYPE_NONE;
if (f == ARR_TYPE_GAP && i == 0 && *rest == '\0')
f = ARR_TYPE_NONE;
if (f != ARR_TYPE_NONE)
*flag |= (f << (i++ * BITS_PER_ARROW));
}
}
void arrow_flags(Agedge_t *e, uint32_t *sflag, uint32_t *eflag) {
char *attr;
*sflag = ARR_TYPE_NONE;
*eflag = agisdirected(agraphof(e)) ? ARR_TYPE_NORM : ARR_TYPE_NONE;
if (E_dir && ((attr = agxget(e, E_dir)))[0]) {
for (const arrowdir_t *arrowdir = Arrowdirs; arrowdir->dir; arrowdir++) {
if (streq(attr, arrowdir->dir)) {
*sflag = arrowdir->sflag;
*eflag = arrowdir->eflag;
break;
}
}
}
if (*eflag == ARR_TYPE_NORM) {
Agsym_t *arrowhead = agfindedgeattr(agraphof(e), "arrowhead");
if (arrowhead != NULL && ((attr = agxget(e, arrowhead)))[0])
arrow_match_name(attr, eflag);
}
if (*sflag == ARR_TYPE_NORM) {
Agsym_t *arrowtail = agfindedgeattr(agraphof(e), "arrowtail");
if (arrowtail != NULL && ((attr = agxget(e, arrowtail)))[0])
arrow_match_name(attr, sflag);
}
if (ED_conc_opp_flag(e)) {
edge_t *f;
uint32_t s0, e0;
/* pick up arrowhead of opposing edge */
f = agfindedge(agraphof(aghead(e)), aghead(e), agtail(e));
arrow_flags(f, &s0, &e0);
*eflag |= s0;
*sflag |= e0;
}
}
static double arrow_length(edge_t * e, uint32_t flag) {
double length = 0.0;
int i;
const double penwidth = late_double(e, E_penwidth, 1.0, 0.0);
const double arrowsize = late_double(e, E_arrowsz, 1.0, 0.0);
if (arrowsize == 0) {
return 0;
}
for (i = 0; i < NUMB_OF_ARROW_HEADS; i++) {
/* we don't simply index with flag because arrowtypes are not necessarily sorted */
uint32_t f = (flag >> (i * BITS_PER_ARROW)) & ((1 << BITS_PER_ARROW_TYPE) - 1);
for (size_t j = 0; j < Arrowtypes_size; ++j) {
const arrowtype_t *arrowtype = &Arrowtypes[j];
if (f == arrowtype->type) {
const uint32_t arrow_flag = (flag >> (i * BITS_PER_ARROW)) & ((1 << BITS_PER_ARROW) - 1);
length += (arrowtype->len)(arrowtype->lenfact, arrowsize, penwidth, arrow_flag);
break;
}
}
}
return length;
}
/* inside function for calls to bezier_clip */
static bool inside(inside_t * inside_context, pointf p)
{
return DIST2(p, inside_context->a.p[0]) <= inside_context->a.r[0];
}
size_t arrowEndClip(edge_t* e, pointf * ps, size_t startp,
size_t endp, bezier *spl, uint32_t eflag) {
inside_t inside_context;
pointf sp[4];
double elen, elen2;
elen = arrow_length(e, eflag);
elen2 = elen * elen;
spl->eflag = eflag;
spl->ep = ps[endp + 3];
if (endp > startp && DIST2(ps[endp], ps[endp + 3]) < elen2) {
endp -= 3;
}
sp[3] = ps[endp];
sp[2] = ps[endp + 1];
sp[1] = ps[endp + 2];
sp[0] = spl->ep; /* ensure endpoint starts inside */
if (elen > 0) {
inside_context.a.p = &sp[0];
inside_context.a.r = &elen2;
bezier_clip(&inside_context, inside, sp, true);
}
ps[endp] = sp[3];
ps[endp + 1] = sp[2];
ps[endp + 2] = sp[1];
ps[endp + 3] = sp[0];
return endp;
}
size_t arrowStartClip(edge_t* e, pointf * ps, size_t startp,
size_t endp, bezier *spl, uint32_t sflag) {
inside_t inside_context;
pointf sp[4];
double slen, slen2;
slen = arrow_length(e, sflag);
slen2 = slen * slen;
spl->sflag = sflag;
spl->sp = ps[startp];
if (endp > startp && DIST2(ps[startp], ps[startp + 3]) < slen2) {
startp += 3;
}
sp[0] = ps[startp + 3];
sp[1] = ps[startp + 2];
sp[2] = ps[startp + 1];
sp[3] = spl->sp; /* ensure endpoint starts inside */
if (slen > 0) {
inside_context.a.p = &sp[3];
inside_context.a.r = &slen2;
bezier_clip(&inside_context, inside, sp, false);
}
ps[startp] = sp[3];
ps[startp + 1] = sp[2];
ps[startp + 2] = sp[1];
ps[startp + 3] = sp[0];
return startp;
}
/* arrowOrthoClip:
* For orthogonal routing, we know each Bézier of spl is a horizontal or vertical
* line segment. We need to guarantee the B-spline stays this way. At present, we shrink
* the arrows if necessary to fit the last segment at either end. Alternatively, we could
* maintain the arrow size by dropping the 3 points of spl, and adding a new spl encoding
* the arrow, something "ex_0,y_0 x_1,y_1 x_1,y_1 x_1,y_1 x_1,y_1", when the last line
* segment is x_1,y_1 x_2,y_2 x_3,y_3 x_0,y_0. With a good deal more work, we could guarantee
* that the truncated spl clips to the arrow shape.
*/
void arrowOrthoClip(edge_t *e, pointf *ps, size_t startp, size_t endp,
bezier *spl, uint32_t sflag, uint32_t eflag) {
pointf p, q, r, s, t;
double d, tlen, hlen, maxd;
if (sflag && eflag && endp == startp) { /* handle special case of two arrows on a single segment */
p = ps[endp];
q = ps[endp+3];
tlen = arrow_length (e, sflag);
hlen = arrow_length (e, eflag);
d = DIST(p, q);
if (hlen + tlen >= d) {
hlen = tlen = d/3.0;
}
if (p.y == q.y) { // horizontal segment
s.y = t.y = p.y;
if (p.x < q.x) {
t.x = q.x - hlen;
s.x = p.x + tlen;
}
else {
t.x = q.x + hlen;
s.x = p.x - tlen;
}
}
else { // vertical segment
s.x = t.x = p.x;
if (p.y < q.y) {
t.y = q.y - hlen;
s.y = p.y + tlen;
}
else {
t.y = q.y + hlen;
s.y = p.y - tlen;
}
}
ps[endp] = ps[endp + 1] = s;
ps[endp + 2] = ps[endp + 3] = t;
spl->sflag = sflag, spl->sp = p;
spl->eflag = eflag, spl->ep = q;
return;
}
if (eflag) {
hlen = arrow_length(e, eflag);
p = ps[endp];
q = ps[endp+3];
d = DIST(p, q);
maxd = 0.9*d;
if (hlen >= maxd) { /* arrow too long */
hlen = maxd;
}
if (p.y == q.y) { // horizontal segment
r.y = p.y;
if (p.x < q.x) r.x = q.x - hlen;
else r.x = q.x + hlen;
}
else { // vertical segment
r.x = p.x;
if (p.y < q.y) r.y = q.y - hlen;
else r.y = q.y + hlen;
}
ps[endp + 1] = p;
ps[endp + 2] = ps[endp + 3] = r;
spl->eflag = eflag;
spl->ep = q;
}
if (sflag) {
tlen = arrow_length(e, sflag);
p = ps[startp];
q = ps[startp+3];
d = DIST(p, q);
maxd = 0.9*d;
if (tlen >= maxd) { /* arrow too long */
tlen = maxd;
}
if (p.y == q.y) { // horizontal segment
r.y = p.y;
if (p.x < q.x) r.x = p.x + tlen;
else r.x = p.x - tlen;
}
else { // vertical segment
r.x = p.x;
if (p.y < q.y) r.y = p.y + tlen;
else r.y = p.y - tlen;
}
ps[startp] = ps[startp + 1] = r;
ps[startp + 2] = q;
spl->sflag = sflag;
spl->sp = p;
}
}
// See https://www.w3.org/TR/SVG2/painting.html#TermLineJoinShape for the
// terminology
typedef struct {
pointf points[3];
} triangle;
static triangle
miter_shape(pointf base_left, pointf P, pointf base_right, double penwidth) {
if ((base_left.x == P.x && base_left.y == P.y) ||
(base_right.x == P.x && base_right.y == P.y)) {
// the stroke shape is really a point so we just return this point without
// extending it with penwidth in any direction, which seems to be the way
// SVG renderers render this.
const triangle line_join_shape = {{P, P, P}};
return line_join_shape;
}
const pointf A[] = {base_left, P};
const double dxA = A[1].x - A[0].x;
const double dyA = A[1].y - A[0].y;
const double hypotA = hypot(dxA, dyA);
const double cosAlpha = dxA / hypotA;
const double sinAlpha = dyA / hypotA;
const double alpha = dyA > 0 ? acos(cosAlpha) : -acos(cosAlpha);
const pointf P1 = {P.x - penwidth / 2.0 * sinAlpha,
P.y + penwidth / 2.0 * cosAlpha};
const pointf B[] = {P, base_right};
const double dxB = B[1].x - B[0].x;
const double dyB = B[1].y - B[0].y;
const double hypotB = hypot(dxB, dyB);
const double cosBeta = dxB / hypotB;
const double beta = dyB > 0 ? acos(cosBeta) : -acos(cosBeta);
// angle between the A segment and the B segment in the reverse direction
const double beta_rev = beta - M_PI;
const double theta = beta_rev - alpha + (beta_rev - alpha <= -M_PI ? 2 * M_PI : 0);
assert(theta >= 0 && theta <= M_PI && "theta out of range");
// check if the miter limit is exceeded according to
// https://www.w3.org/TR/SVG2/painting.html#StrokeMiterlimitProperty
const double stroke_miterlimit = 4.0;
const double normalized_miter_length = 1.0 / sin(theta / 2.0);
const double sinBeta = dyB / hypotB;
const double sinBetaMinusPi = -sinBeta;
const double cosBetaMinusPi = -cosBeta;
const pointf P2 = {P.x + penwidth / 2.0 * sinBetaMinusPi,
P.y - penwidth / 2.0 * cosBetaMinusPi};
if (normalized_miter_length > stroke_miterlimit) {
// fall back to bevel
// the bevel is the triangle formed from the three points P, P1 and P2 so
// a good enough approximation of the miter point in this case is the
// crossing of P-P3 with P1-P2 which is the same as the midpoint between
// P1 and P2
const pointf Pbevel = {(P1.x + P2.x) / 2, (P1.y + P2.y) / 2};
const triangle line_join_shape = {{Pbevel, P1, P2}};
return line_join_shape;
}
// length between P1 and P3 (and between P2 and P3)
const double l = penwidth / 2.0 / tan(theta / 2.0);
const pointf P3 = {P1.x + l * cosAlpha,
P1.y + l * sinAlpha};
const triangle line_join_shape = {{P3, P1, P2}};
return line_join_shape;
}
static pointf arrow_type_normal0(pointf p, pointf u, double penwidth,
uint32_t flag, pointf *a) {
pointf q, v;
double arrowwidth;
arrowwidth = 0.35;
if (penwidth > 4)
arrowwidth *= penwidth / 4;
v.x = -u.y * arrowwidth;
v.y = u.x * arrowwidth;
q.x = p.x + u.x;
q.y = p.y + u.y;
pointf delta_base = {0, 0};
const pointf origin = {0, 0};
const pointf v_inv = {-v.x, -v.y};
const pointf normal_left = flag & ARR_MOD_RIGHT ? origin : v_inv;
const pointf normal_right = flag & ARR_MOD_LEFT ? origin : v;
const pointf base_left = flag & ARR_MOD_INV ? normal_right : normal_left;
const pointf base_right = flag & ARR_MOD_INV ? normal_left : normal_right;
const pointf normal_tip = {-u.x, -u.y};
const pointf inv_tip = u;
const pointf P = flag & ARR_MOD_INV ? inv_tip : normal_tip ;
pointf delta_tip = {0, 0};
if (u.x != 0 || u.y != 0) {
// phi = angle of arrow
const double cosPhi = P.x / hypot(P.x, P.y);
const double sinPhi = P.y / hypot(P.x, P.y);
const double phi = P.y > 0 ? acos(cosPhi) : -acos(cosPhi);
if (flag & ARR_MOD_LEFT) {
const triangle line_join_shape = miter_shape(base_left, P, base_right, penwidth);
const pointf P1 = line_join_shape.points[1];
// alpha = angle of P -> P1
const double dx_P_P1 = P1.x - P.x;
const double dy_P_P1 = P1.y - P.y;
const double hypot_P_P1 = hypot(dx_P_P1, dy_P_P1);
const double cosAlpha = dx_P_P1 / hypot_P_P1;
const double alpha = dy_P_P1 > 0 ? acos(cosAlpha) : -acos(cosAlpha);
const double gamma = alpha - phi;
const double delta_tip_length = hypot_P_P1 * cos(gamma);
delta_tip = (pointf){delta_tip_length * cosPhi, delta_tip_length * sinPhi};
} else if (flag & ARR_MOD_RIGHT) {
const triangle line_join_shape = miter_shape(base_left, P, base_right, penwidth);
const pointf P2 = line_join_shape.points[2];
// alpha = angle of P -> P2
const double dx_P_P2 = P2.x - P.x;
const double dy_P_P2 = P2.y - P.y;
const double hypot_P_P2 = hypot(dx_P_P2, dy_P_P2);
const double cosAlpha = dx_P_P2 / hypot_P_P2;
const double alpha = dy_P_P2 > 0 ? acos(cosAlpha) : -acos(cosAlpha);
const double gamma = alpha - phi;
const double delta_tip_length = hypot_P_P2 * cos(gamma);
delta_tip = (pointf){delta_tip_length * cosPhi, delta_tip_length * sinPhi};
} else {
const triangle line_join_shape = miter_shape(base_left, P, base_right, penwidth);
const pointf P3 = line_join_shape.points[0];
delta_tip = sub_pointf(P3, P);
}
delta_base = (pointf) {penwidth / 2.0 * cosPhi, penwidth / 2.0 * sinPhi};
}
if (flag & ARR_MOD_INV) {
p.x += delta_base.x;
p.y += delta_base.y;
q.x += delta_base.x;
q.y += delta_base.y;
a[0] = a[4] = p;
a[1].x = p.x - v.x;
a[1].y = p.y - v.y;
a[2] = q;
a[3].x = p.x + v.x;
a[3].y = p.y + v.y;
q.x += delta_tip.x;
q.y += delta_tip.y;
} else {
p.x -= delta_tip.x;
p.y -= delta_tip.y;
q.x -= delta_tip.x;
q.y -= delta_tip.y;
a[0] = a[4] = q;
a[1].x = q.x - v.x;
a[1].y = q.y - v.y;
a[2] = p;
a[3].x = q.x + v.x;
a[3].y = q.y + v.y;
q.x -= delta_base.x;
q.y -= delta_base.y;
}
return q;
}
static pointf arrow_type_normal(GVJ_t *job, pointf p, pointf u,
double arrowsize, double penwidth,
uint32_t flag) {
(void)arrowsize;
pointf a[5];
pointf q = arrow_type_normal0(p, u, penwidth, flag, a);
if (flag & ARR_MOD_LEFT)
gvrender_polygon(job, a, 3, !(flag & ARR_MOD_OPEN));
else if (flag & ARR_MOD_RIGHT)
gvrender_polygon(job, &a[2], 3, !(flag & ARR_MOD_OPEN));
else
gvrender_polygon(job, &a[1], 3, !(flag & ARR_MOD_OPEN));
return q;
}
static pointf arrow_type_crow0(pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag, pointf *a) {
pointf m, q, v, w;
double arrowwidth, shaftwidth;
arrowwidth = 0.45;
if (penwidth > 4 * arrowsize && (flag & ARR_MOD_INV))
arrowwidth *= penwidth / (4 * arrowsize);
shaftwidth = 0;
if (penwidth > 1 && (flag & ARR_MOD_INV))
shaftwidth = 0.05 * (penwidth - 1) / arrowsize; /* arrowsize to cancel the arrowsize term already in u */
v.x = -u.y * arrowwidth;
v.y = u.x * arrowwidth;
w.x = -u.y * shaftwidth;
w.y = u.x * shaftwidth;
q.x = p.x + u.x;
q.y = p.y + u.y;
m.x = p.x + u.x * 0.5;
m.y = p.y + u.y * 0.5;
pointf delta_base = {0, 0};
const pointf origin = {0, 0};
const pointf v_inv = {-v.x, -v.y};
const pointf normal_left = flag & ARR_MOD_RIGHT ? origin : v;
const pointf normal_right = flag & ARR_MOD_LEFT ? origin : v_inv;
const pointf base_left = flag & ARR_MOD_INV ? normal_right : normal_left;
const pointf base_right = flag & ARR_MOD_INV ? normal_left : normal_right;
const pointf normal_tip = u;
const pointf inv_tip = {-u.x, -u.y};
const pointf P = flag & ARR_MOD_INV ? inv_tip : normal_tip ;
pointf delta_tip = {0, 0};
if (u.x != 0 || u.y != 0) {
// phi = angle of arrow
const double cosPhi = P.x / hypot(P.x, P.y);
const double sinPhi = P.y / hypot(P.x, P.y);
const double phi = P.y > 0 ? acos(cosPhi) : -acos(cosPhi);
if ((flag & ARR_MOD_LEFT && flag & ARR_MOD_INV) || (flag & ARR_MOD_RIGHT && !(flag & ARR_MOD_INV))) {
const triangle line_join_shape = miter_shape(base_left, P, base_right, penwidth);
const pointf P2 = line_join_shape.points[2];
// alpha = angle of P -> P2
const double dx_P_P2 = P2.x - P.x;
const double dy_P_P2 = P2.y - P.y;
const double hypot_P_P2 = hypot(dx_P_P2, dy_P_P2);
const double cosAlpha = dx_P_P2 / hypot_P_P2;
const double alpha = dy_P_P2 > 0 ? acos(cosAlpha) : -acos(cosAlpha);
const double gamma = alpha - phi;
const double delta_tip_length = hypot_P_P2 * cos(gamma);
delta_tip = (pointf){delta_tip_length * cosPhi, delta_tip_length * sinPhi};
} else if ((flag & ARR_MOD_LEFT && !(flag & ARR_MOD_INV)) || (flag & ARR_MOD_RIGHT && flag & ARR_MOD_INV)) {
const triangle line_join_shape = miter_shape(base_left, P, base_right, penwidth);
const pointf P1 = line_join_shape.points[1];
// alpha = angle of P -> P1
const double dx_P_P1 = P1.x - P.x;
const double dy_P_P1 = P1.y - P.y;
const double hypot_P_P1 = hypot(dx_P_P1, dy_P_P1);
const double cosAlpha = dx_P_P1 / hypot_P_P1;
const double alpha = dy_P_P1 > 0 ? acos(cosAlpha) : -acos(cosAlpha);
const double gamma = alpha - phi;
const double delta_tip_length = hypot_P_P1 * cos(gamma);
delta_tip = (pointf){delta_tip_length * cosPhi, delta_tip_length * sinPhi};
} else {
const triangle line_join_shape = miter_shape(base_left, P, base_right, penwidth);
const pointf P3 = line_join_shape.points[0];
delta_tip = sub_pointf(P3, P);
}
if (flag & ARR_MOD_INV) { /* vee */
delta_base = (pointf) {penwidth / 2.0 * cosPhi, penwidth / 2.0 * sinPhi};
} else {
// the left and right "toes" of the crow extend in the direction of
// the arrow by the same amount. Their shape is not affected by the
// 'l' or 'r' modifiers. Here we use the right "toe" to calculate
// the extension. This is ok even if it's not actually rendered when
// the 'l' modifier is used.
const pointf toe_base_left = add_pointf(sub_pointf(m, q), w);
const pointf toe_base_right = origin;
const pointf toe_P = sub_pointf(v, u);
const triangle toe_line_join_shape = miter_shape(toe_base_left, toe_P, toe_base_right, penwidth);
const pointf P1 = toe_line_join_shape.points[1];
// alpha = angle of toe_P -> P1
const double dx_P_P1 = P1.x - toe_P.x;
const double dy_P_P1 = P1.y - toe_P.y;
const double hypot_P_P1 = hypot(dx_P_P1, dy_P_P1);
const double cosAlpha = dx_P_P1 / hypot_P_P1;
const double alpha = dy_P_P1 > 0 ? acos(cosAlpha) : -acos(cosAlpha);
const double gamma = alpha - phi;
const double delta_tip_length = -hypot_P_P1 * cos(gamma);
delta_base = (pointf){delta_tip_length * cosPhi, delta_tip_length * sinPhi};
}
}
if (flag & ARR_MOD_INV) { /* vee */
p.x -= delta_tip.x;
p.y -= delta_tip.y;
q.x -= delta_tip.x;
q.y -= delta_tip.y;
a[0] = a[8] = p;
a[1].x = q.x - v.x;
a[1].y = q.y - v.y;
a[2].x = m.x - w.x;
a[2].y = m.y - w.y;
a[3].x = q.x - w.x;
a[3].y = q.y - w.y;
a[4] = q;
a[5].x = q.x + w.x;
a[5].y = q.y + w.y;
a[6].x = m.x + w.x;
a[6].y = m.y + w.y;
a[7].x = q.x + v.x;
a[7].y = q.y + v.y;
q.x -= delta_base.x;
q.y -= delta_base.y;
} else { /* crow */
p.x += delta_base.x;
p.y += delta_base.y;
q.x += delta_base.x;
q.y += delta_base.y;
a[0] = a[8] = q;
a[1].x = p.x - v.x;
a[1].y = p.y - v.y;
a[2].x = m.x - w.x;
a[2].y = m.y - w.y;
a[3].x = p.x + delta_base.x;
a[3].y = p.y + delta_base.y;
a[4] = add_pointf(p, delta_base);
a[5].x = p.x + delta_base.x;
a[5].y = p.y + delta_base.y;
a[6].x = m.x + w.x;
a[6].y = m.y + w.y;
a[7].x = p.x + v.x;
a[7].y = p.y + v.y;
q.x += delta_tip.x;
q.y += delta_tip.y;
}
return q;
}
static pointf arrow_type_crow(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag) {
(void)arrowsize;
pointf a[9];
pointf q = arrow_type_crow0(p, u, arrowsize, penwidth, flag, a);
if (flag & ARR_MOD_LEFT)
gvrender_polygon(job, a, 5, 1);
else if (flag & ARR_MOD_RIGHT)
gvrender_polygon(job, &a[4], 5, 1);
else
gvrender_polygon(job, a, 8, 1);
return q;
}
static pointf arrow_type_gap(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag) {
(void)arrowsize;
(void)penwidth;
(void)flag;
pointf q, a[2];
q.x = p.x + u.x;
q.y = p.y + u.y;
a[0] = p;
a[1] = q;
gvrender_polyline(job, a, 2);
return q;
}
static pointf arrow_type_tee(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag) {
(void)arrowsize;
pointf m, n, q, v, a[4];
v.x = -u.y;
v.y = u.x;
q.x = p.x + u.x;
q.y = p.y + u.y;
m.x = p.x + u.x * 0.2;
m.y = p.y + u.y * 0.2;
n.x = p.x + u.x * 0.6;
n.y = p.y + u.y * 0.6;
const double length = hypot(u.x, u.y);
const double polygon_extend_over_polyline = penwidth / 2 - 0.2 * length;
if (length > 0 && polygon_extend_over_polyline > 0) {
// the polygon part of the 'tee' arrow will visually overlap the
// 'polyline' part so we need to move the whole arrow in order not to
// overlap the node
const pointf P = {-u.x, -u.y};
// phi = angle of arrow
const double cosPhi = P.x / hypot(P.x, P.y);
const double sinPhi = P.y / hypot(P.x, P.y);
const pointf delta = {polygon_extend_over_polyline * cosPhi, polygon_extend_over_polyline * sinPhi};
// move the arrow backwards to not visually overlap the node
p = sub_pointf(p, delta);
m = sub_pointf(m, delta);
n = sub_pointf(n, delta);
q = sub_pointf(q, delta);
}
a[0].x = m.x + v.x;
a[0].y = m.y + v.y;
a[1].x = m.x - v.x;
a[1].y = m.y - v.y;
a[2].x = n.x - v.x;
a[2].y = n.y - v.y;
a[3].x = n.x + v.x;
a[3].y = n.y + v.y;
if (flag & ARR_MOD_LEFT) {
a[0] = m;
a[3] = n;
} else if (flag & ARR_MOD_RIGHT) {
a[1] = m;
a[2] = n;
}
gvrender_polygon(job, a, 4, 1);
a[0] = p;
a[1] = q;
gvrender_polyline(job, a, 2);
// A polyline doesn't extend visually beyond its starting point, so we
// return the starting point as it is, without taking penwidth into account
return q;
}
static pointf arrow_type_box(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag) {
(void)arrowsize;
(void)penwidth;
pointf m, q, v, a[4];
v.x = -u.y * 0.4;
v.y = u.x * 0.4;
m.x = p.x + u.x * 0.8;
m.y = p.y + u.y * 0.8;
q.x = p.x + u.x;
q.y = p.y + u.y;
pointf delta = {0, 0};
if (u.x != 0 || u.y != 0) {
const pointf P = {-u.x, -u.y};
// phi = angle of arrow
const double cosPhi = P.x / hypot(P.x, P.y);
const double sinPhi = P.y / hypot(P.x, P.y);
delta = (pointf) {penwidth / 2.0 * cosPhi, penwidth / 2.0 * sinPhi};
}
// move the arrow backwards to not visually overlap the node
p.x -= delta.x;
p.y -= delta.y;
m.x -= delta.x;
m.y -= delta.y;
q.x -= delta.x;
q.y -= delta.y;
a[0].x = p.x + v.x;
a[0].y = p.y + v.y;
a[1].x = p.x - v.x;
a[1].y = p.y - v.y;
a[2].x = m.x - v.x;
a[2].y = m.y - v.y;
a[3].x = m.x + v.x;
a[3].y = m.y + v.y;
if (flag & ARR_MOD_LEFT) {
a[0] = p;
a[3] = m;
} else if (flag & ARR_MOD_RIGHT) {
a[1] = p;
a[2] = m;
}
gvrender_polygon(job, a, 4, !(flag & ARR_MOD_OPEN));
a[0] = m;
a[1] = q;
gvrender_polyline(job, a, 2);
// A polyline doesn't extend visually beyond its starting point, so we
// return the starting point as it is, without taking penwidth into account
return q;
}
static pointf arrow_type_diamond0(pointf p, pointf u, double penwidth,
uint32_t flag, pointf *a) {
pointf q, r, v;
v.x = -u.y / 3.;
v.y = u.x / 3.;
r.x = p.x + u.x / 2.;
r.y = p.y + u.y / 2.;
q.x = p.x + u.x;
q.y = p.y + u.y;
const pointf origin = {0, 0};
const pointf unmod_left = sub_pointf(scale(-0.5, u), v);
const pointf unmod_right = add_pointf(scale(-0.5, u), v);
const pointf base_left = flag & ARR_MOD_RIGHT ? origin : unmod_left;
const pointf base_right = flag & ARR_MOD_LEFT ? origin : unmod_right;
const pointf tip = scale(-1, u);
const pointf P = tip;
const triangle line_join_shape = miter_shape(base_left, P, base_right, penwidth);
const pointf P3 = line_join_shape.points[0];
const pointf delta = sub_pointf(P3, P);
// move the arrow backwards to not visually overlap the node
p = sub_pointf(p, delta);
r = sub_pointf(r, delta);
q = sub_pointf(q, delta);
a[0] = a[4] = q;
a[1].x = r.x + v.x;
a[1].y = r.y + v.y;
a[2] = p;
a[3].x = r.x - v.x;
a[3].y = r.y - v.y;
// return the visual starting point of the arrow outline
q = sub_pointf(q, delta);
return q;
}
static pointf arrow_type_diamond(GVJ_t *job, pointf p, pointf u,
double arrowsize, double penwidth,
uint32_t flag) {
(void)arrowsize;
pointf a[5];
pointf q = arrow_type_diamond0(p, u, penwidth, flag, a);
if (flag & ARR_MOD_LEFT)
gvrender_polygon(job, &a[2], 3, !(flag & ARR_MOD_OPEN));
else if (flag & ARR_MOD_RIGHT)
gvrender_polygon(job, a, 3, !(flag & ARR_MOD_OPEN));
else
gvrender_polygon(job, a, 4, !(flag & ARR_MOD_OPEN));
return q;
}
static pointf arrow_type_dot(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag) {
(void)arrowsize;
(void)penwidth;
double r;
pointf AF[2];
r = hypot(u.x, u.y) / 2.;
pointf delta = {0, 0};
if (u.x != 0 || u.y != 0) {
const pointf P = {-u.x, -u.y};
// phi = angle of arrow
const double cosPhi = P.x / hypot(P.x, P.y);
const double sinPhi = P.y / hypot(P.x, P.y);
delta = (pointf) {penwidth / 2.0 * cosPhi, penwidth / 2.0 * sinPhi};
// move the arrow backwards to not visually overlap the node
p.x -= delta.x;
p.y -= delta.y;
}
AF[0].x = p.x + u.x / 2. - r;
AF[0].y = p.y + u.y / 2. - r;
AF[1].x = p.x + u.x / 2. + r;
AF[1].y = p.y + u.y / 2. + r;
gvrender_ellipse(job, AF, !(flag & ARR_MOD_OPEN));
pointf q = {p.x + u.x, p.y + u.y};
// return the visual starting point of the arrow outline
q.x -= delta.x;
q.y -= delta.y;
return q;
}
/* Draw a concave semicircle using a single cubic Bézier curve that touches p at its midpoint.
* See http://digerati-illuminatus.blogspot.com.au/2008/05/approximating-semicircle-with-cubic.html for details.
*/
static pointf arrow_type_curve(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag) {
(void)arrowsize;
double arrowwidth = penwidth > 4 ? 0.5 * penwidth / 4 : 0.5;
pointf q, v, w;
pointf AF[4], a[2];
a[0] = p;
if (!(flag & ARR_MOD_INV) && (u.x != 0 || u.y != 0)) {
const pointf P = {-u.x, -u.y};
// phi = angle of arrow
const double cosPhi = P.x / hypot(P.x, P.y);
const double sinPhi = P.y / hypot(P.x, P.y);
const pointf delta = {penwidth / 2.0 * cosPhi, penwidth / 2.0 * sinPhi};
// move the arrow backwards to not visually overlap the node
p.x -= delta.x;
p.y -= delta.y;
}
q.x = p.x + u.x;
q.y = p.y + u.y;
v.x = -u.y * arrowwidth;
v.y = u.x * arrowwidth;
w.x = v.y; // same direction as u, same magnitude as v.
w.y = -v.x;
a[1] = q;
AF[0].x = p.x + v.x + w.x;
AF[0].y = p.y + v.y + w.y;
AF[3].x = p.x - v.x + w.x;
AF[3].y = p.y - v.y + w.y;
if (flag & ARR_MOD_INV) { /* ----(-| */
AF[1].x = p.x + 0.95 * v.x + w.x + w.x * 4.0 / 3.0;
AF[1].y = AF[0].y + w.y * 4.0 / 3.0;
AF[2].x = p.x - 0.95 * v.x + w.x + w.x * 4.0 / 3.0;
AF[2].y = AF[3].y + w.y * 4.0 / 3.0;
}
else { /* ----)-| */
AF[1].x = p.x + 0.95 * v.x + w.x - w.x * 4.0 / 3.0;
AF[1].y = AF[0].y - w.y * 4.0 / 3.0;
AF[2].x = p.x - 0.95 * v.x + w.x - w.x * 4.0 / 3.0;
AF[2].y = AF[3].y - w.y * 4.0 / 3.0;
}
gvrender_polyline(job, a, 2);
if (flag & ARR_MOD_LEFT)
Bezier(AF, 0.5, NULL, AF);
else if (flag & ARR_MOD_RIGHT)
Bezier(AF, 0.5, AF, NULL);
gvrender_beziercurve(job, AF, sizeof(AF) / sizeof(pointf), 0);
return q;
}
static pointf arrow_gen_type(GVJ_t *job, pointf p, pointf u, double arrowsize,
double penwidth, uint32_t flag) {
uint32_t f = flag & ((1 << BITS_PER_ARROW_TYPE) - 1);
for (size_t i = 0; i < Arrowtypes_size; ++i) {
const arrowtype_t *arrowtype = &Arrowtypes[i];
if (f == arrowtype->type) {
u.x *= arrowtype->lenfact * arrowsize;
u.y *= arrowtype->lenfact * arrowsize;
p = arrowtype->gen(job, p, u, arrowsize, penwidth, flag);
break;
}
}
return p;
}
boxf arrow_bb(pointf p, pointf u, double arrowsize)
{
double s;
boxf bb;
double ax,ay,bx,by,cx,cy,dx,dy;
double ux2, uy2;
/* generate arrowhead vector */
u.x -= p.x;
u.y -= p.y;
/* the EPSILONs are to keep this stable as length of u approaches 0.0 */
s = ARROW_LENGTH * arrowsize / (hypot(u.x, u.y) + EPSILON);
u.x += (u.x >= 0.0) ? EPSILON : -EPSILON;
u.y += (u.y >= 0.0) ? EPSILON : -EPSILON;
u.x *= s;
u.y *= s;
/* compute all 4 corners of rotated arrowhead bounding box */
ux2 = u.x / 2.;
uy2 = u.y / 2.;
ax = p.x - uy2;
ay = p.y - ux2;
bx = p.x + uy2;
by = p.y + ux2;
cx = ax + u.x;
cy = ay + u.y;
dx = bx + u.x;
dy = by + u.y;
/* compute a right bb */
bb.UR.x = fmax(ax, fmax(bx, fmax(cx, dx)));
bb.UR.y = fmax(ay, fmax(by, fmax(cy, dy)));
bb.LL.x = fmin(ax, fmin(bx, fmin(cx, dx)));
bb.LL.y = fmin(ay, fmin(by, fmin(cy, dy)));
return bb;
}
void arrow_gen(GVJ_t *job, emit_state_t emit_state, pointf p, pointf u,
double arrowsize, double penwidth, uint32_t flag) {
obj_state_t *obj = job->obj;
double s;
int i;
emit_state_t old_emit_state;
old_emit_state = obj->emit_state;
obj->emit_state = emit_state;
/* Dotted and dashed styles on the arrowhead are ugly (dds) */
/* linewidth needs to be reset */
gvrender_set_style(job, job->gvc->defaultlinestyle);
gvrender_set_penwidth(job, penwidth);
/* generate arrowhead vector */
u.x -= p.x;
u.y -= p.y;
/* the EPSILONs are to keep this stable as length of u approaches 0.0 */
s = ARROW_LENGTH / (hypot(u.x, u.y) + EPSILON);
u.x += (u.x >= 0.0) ? EPSILON : -EPSILON;
u.y += (u.y >= 0.0) ? EPSILON : -EPSILON;
u.x *= s;
u.y *= s;
/* the first arrow head - closest to node */
for (i = 0; i < NUMB_OF_ARROW_HEADS; i++) {
uint32_t f = (flag >> (i * BITS_PER_ARROW)) & ((1 << BITS_PER_ARROW) - 1);
if (f == ARR_TYPE_NONE)
break;
p = arrow_gen_type(job, p, u, arrowsize, penwidth, f);
}
obj->emit_state = old_emit_state;
}
static double arrow_length_generic(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
(void)penwidth;
(void)flag;
return lenfact * arrowsize * ARROW_LENGTH;
}
static double arrow_length_normal(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
pointf a[5];
// set arrow end point at origin
const pointf p = {0, 0};
// generate an arrowhead vector along x-axis
const pointf u = {lenfact * arrowsize * ARROW_LENGTH, 0};
// arrow start point
pointf q = arrow_type_normal0(p, u, penwidth, flag, a);
const pointf base1 = a[1];
const pointf base2 = a[3];
const pointf tip = a[2];
const double full_length = q.x;
assert(full_length > 0 && "non-positive full length");
const double nominal_length = fabs(base1.x - tip.x);
const double nominal_base_width = base2.y - base1.y;
assert(nominal_base_width > 0 && "non-positive nominal base width");
// the full base width is proportionally scaled with the length
const double full_base_width =
nominal_base_width * full_length / nominal_length;
assert(full_base_width > 0 && "non-positive full base width");
// we want a small overlap between the edge path (stem) and the arrow to avoid
// gaps between them in case the arrow has a corner towards the edge path
const double overlap_at_base = penwidth / 2;
// overlap the tip to a point where its width is equal to the penwidth.
const double length_where_width_is_penwidth =
full_length * penwidth / full_base_width;
const double overlap_at_tip = length_where_width_is_penwidth;
const double overlap = flag & ARR_MOD_INV ? overlap_at_tip : overlap_at_base;
// arrow length is the x value of the start point since the arrow points along
// the positive x axis and ends at origin
return full_length - overlap;
}
static double arrow_length_tee(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
(void)flag;
// The `tee` arrow shape normally begins and ends with a polyline which
// doesn't extend visually beyond its starting point, so we only have to
// take penwidth into account if the polygon part visually extends the
// polyline part at the start or end points.
const double nominal_length = lenfact * arrowsize * ARROW_LENGTH;
double length = nominal_length;
// see the 'arrow_type_tee' function for the magical constants used below
const double polygon_extend_over_polyline_at_start = penwidth / 2 - (1 - 0.6) * nominal_length;
if (polygon_extend_over_polyline_at_start > 0) {
length += polygon_extend_over_polyline_at_start;
}
const double polygon_extend_over_polyline_at_end = penwidth / 2 - 0.2 * nominal_length;
if (polygon_extend_over_polyline_at_start > 0) {
length += polygon_extend_over_polyline_at_end;
}
return length;
}
static double arrow_length_box(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
(void)flag;
// The `box` arrow shape begins with a polyline which doesn't extend
// visually beyond its starting point, so we only have to take penwidth
// into account at the end point.
return lenfact * arrowsize * ARROW_LENGTH + penwidth / 2;
}
static double arrow_length_diamond(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
pointf a[5];
// set arrow end point at origin
const pointf p = {0, 0};
// generate an arrowhead vector along x-axis
const pointf u = {lenfact * arrowsize * ARROW_LENGTH, 0};
// arrow start point
pointf q = arrow_type_diamond0(p, u, penwidth, flag, a);
// calculate overlap using a triangle with its base at the left and right
// corners of the diamond and its tip at the end point
const pointf base1 = a[3];
const pointf base2 = a[1];
const pointf tip = a[2];
const double full_length = q.x / 2;
assert(full_length > 0 && "non-positive full length");
const double nominal_length = fabs(base1.x - tip.x);
const double nominal_base_width = base2.y - base1.y;
assert(nominal_base_width > 0 && "non-positive nominal base width");
// the full base width is proportionally scaled with the length
const double full_base_width =
nominal_base_width * full_length / nominal_length;
assert(full_base_width > 0 && "non-positive full base width");
// we want a small overlap between the edge path (stem) and the arrow to avoid
// gaps between them in case the arrow has a corner towards the edge path
// overlap the tip to a point where its width is equal to the penwidth
const double length_where_width_is_penwidth =
full_length * penwidth / full_base_width;
const double overlap_at_tip = length_where_width_is_penwidth;
const double overlap = overlap_at_tip;
// arrow length is the x value of the start point since the arrow points along
// the positive x axis and ends at origin
return 2 * full_length - overlap;
}
static double arrow_length_dot(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
(void)flag;
return lenfact * arrowsize * ARROW_LENGTH + penwidth;
}
static double arrow_length_curve(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
(void)flag;
return lenfact * arrowsize * ARROW_LENGTH + penwidth / 2;
}
static double arrow_length_crow(double lenfact, double arrowsize,
double penwidth, uint32_t flag) {
pointf a[9];
// set arrow end point at origin
const pointf p = {0, 0};
// generate an arrowhead vector along x-axis
const pointf u = {lenfact * arrowsize * ARROW_LENGTH, 0};
// arrow start point
pointf q = arrow_type_crow0(p, u, arrowsize, penwidth, flag, a);
const pointf base1 = a[1];
const pointf base2 = a[7];
const pointf tip = a[0];
const pointf shaft1 = a[3];
const double full_length = q.x;
assert(full_length > 0 && "non-positive full length");
const double full_length_without_shaft = full_length - (base1.x - shaft1.x);
assert(full_length_without_shaft > 0 && "non-positive full length without shaft");
const double nominal_length = fabs(base1.x - tip.x);
const double nominal_base_width = base2.y - base1.y;
assert(nominal_base_width > 0 && "non-positive nominal base width");
// the full base width is proportionally scaled with the length
const double full_base_width =
nominal_base_width * full_length_without_shaft / nominal_length;
assert(full_base_width > 0 && "non-positive full base width");
// we want a small overlap between the edge path (stem) and the arrow to avoid
// gaps between them in case the arrow has a corner towards the edge path
const double overlap_at_base = penwidth / 2;
// overlap the tip to a point where its width is equal to the penwidth.
const double length_where_width_is_penwidth =
full_length_without_shaft * penwidth / full_base_width;
const double overlap_at_tip = length_where_width_is_penwidth;
const double overlap = flag & ARR_MOD_INV ? overlap_at_base : overlap_at_tip;
// arrow length is the x value of the start point since the arrow points along
// the positive x axis and ends at origin
return full_length - overlap;
}
|