File: ellipse.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (306 lines) | stat: -rw-r--r-- 9,621 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/// @file
/// @ingroup common_render
/*************************************************************************
 * Copyright (c) 2012 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

/* This code is derived from the Java implementation by Luc Maisonobe */
/* Copyright (c) 2003-2004, Luc Maisonobe
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with
 * or without modification, are permitted provided that
 * the following conditions are met:
 *
 *    Redistributions of source code must retain the
 *    above copyright notice, this list of conditions and
 *    the following disclaimer.
 *    Redistributions in binary form must reproduce the
 *    above copyright notice, this list of conditions and
 *    the following disclaimer in the documentation
 *    and/or other materials provided with the
 *    distribution.
 *    Neither the names of spaceroots.org, spaceroots.com
 *    nor the names of their contributors may be used to
 *    endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <common/render.h>
#include <pathplan/pathplan.h>
#include <util/alloc.h>
#include <util/list.h>

#define TWOPI (2*M_PI)

typedef struct {
    double cx, cy;		/* center */
    double a, b;		/* semi-major and -minor axes */

  /* Start and end angles of the arc. */
    double eta1, eta2;
} ellipse_t;

static void initEllipse(ellipse_t * ep, double cx, double cy, double a,
                        double b, double lambda1, double lambda2) {
    ep->cx = cx;
    ep->cy = cy;
    ep->a = a;
    ep->b = b;

    ep->eta1 = atan2(sin(lambda1) / b, cos(lambda1) / a);
    ep->eta2 = atan2(sin(lambda2) / b, cos(lambda2) / a);

    // make sure we have eta1 <= eta2 <= eta1 + 2*PI
    ep->eta2 -= TWOPI * floor((ep->eta2 - ep->eta1) / TWOPI);

    // the preceding correction fails if we have exactly eta2 - eta1 = 2*PI
    // it reduces the interval to zero length
    if (lambda2 - lambda1 > M_PI && ep->eta2 - ep->eta1 < M_PI) {
	ep->eta2 += TWOPI;
    }
}

typedef double erray_t[2][4][4];

  // coefficients for error estimation
  // while using cubic Bézier curves for approximation
  // 0 < b/a < 1/4
static erray_t coeffs3Low = {
    {
	{3.85268, -21.229, -0.330434, 0.0127842},
	{-1.61486, 0.706564, 0.225945, 0.263682},
	{-0.910164, 0.388383, 0.00551445, 0.00671814},
	{-0.630184, 0.192402, 0.0098871, 0.0102527}
    }, 
    {
	{-0.162211, 9.94329, 0.13723, 0.0124084},
	{-0.253135, 0.00187735, 0.0230286, 0.01264},
	{-0.0695069, -0.0437594, 0.0120636, 0.0163087},
	{-0.0328856, -0.00926032, -0.00173573, 0.00527385}
    }
};

  // coefficients for error estimation
  // while using cubic Bézier curves for approximation
  // 1/4 <= b/a <= 1
static erray_t coeffs3High = {
    {
	{0.0899116, -19.2349, -4.11711, 0.183362},
	{0.138148, -1.45804, 1.32044, 1.38474},
	{0.230903, -0.450262, 0.219963, 0.414038},
	{0.0590565, -0.101062, 0.0430592, 0.0204699}
    }, 
    {
	{0.0164649, 9.89394, 0.0919496, 0.00760802},
	{0.0191603, -0.0322058, 0.0134667, -0.0825018},
	{0.0156192, -0.017535, 0.00326508, -0.228157},
	{-0.0236752, 0.0405821, -0.0173086, 0.176187}
    }
};

  // safety factor to convert the "best" error approximation
  // into a "max bound" error
static double safety3[] = {
    0.001, 4.98, 0.207, 0.0067
};

/* Compute the value of a rational function.
 * This method handles rational functions where the numerator is
 * quadratic and the denominator is linear
 */
#define RationalFunction(x,c) ((x * (x * c[0] + c[1]) + c[2]) / (x + c[3]))

/* Estimate the approximation error for a sub-arc of the instance.
 * tA and tB give the start and end angle of the subarc
 * Returns upper bound of the approximation error between the Bézier
 * curve and the real ellipse
 */
static double estimateError(ellipse_t *ep, double etaA, double etaB) {
    double c0, c1, eta = 0.5 * (etaA + etaB);

    double x = ep->b / ep->a;
    double dEta = etaB - etaA;
    double cos2 = cos(2 * eta);
    double cos4 = cos(4 * eta);
    double cos6 = cos(6 * eta);

    // select the right coefficient's set according to b/a
    double (*coeffs)[4][4];
    coeffs = x < 0.25 ? coeffs3Low : coeffs3High;

    c0 = RationalFunction(x, coeffs[0][0])
       + cos2 * RationalFunction(x, coeffs[0][1])
       + cos4 * RationalFunction(x, coeffs[0][2])
       + cos6 * RationalFunction(x, coeffs[0][3]);

    c1 = RationalFunction(x, coeffs[1][0])
       + cos2 * RationalFunction(x, coeffs[1][1])
       + cos4 * RationalFunction(x, coeffs[1][2])
       + cos6 * RationalFunction(x, coeffs[1][3]);

    return RationalFunction(x, safety3) * ep->a * exp(c0 + c1 * dEta);
}

typedef LIST(pointf) bezier_path_t;

/* append points to a Bézier path
 * Assume initial call to moveTo to initialize, followed by
 * calls to curveTo and lineTo, and finished with endPath.
 */

static void moveTo(bezier_path_t *polypath, double x, double y) {
  LIST_APPEND(polypath, ((pointf){.x = x, .y = y}));
}

static void curveTo(bezier_path_t *polypath, double x1, double y1, double x2,
                    double y2, double x3, double y3) {
  LIST_APPEND(polypath, ((pointf){.x = x1, .y = y1}));
  LIST_APPEND(polypath, ((pointf){.x = x2, .y = y2}));
  LIST_APPEND(polypath, ((pointf){.x = x3, .y = y3}));
}

static void lineTo(bezier_path_t *polypath, double x, double y) {
    const pointf curp = LIST_GET(polypath, LIST_SIZE(polypath) - 1);
    curveTo(polypath, curp.x, curp.y, x, y, x, y);
}

static void endPath(bezier_path_t *polypath) {
    const pointf p0 = LIST_GET(polypath, 0);
    lineTo(polypath, p0.x, p0.y);
}

/* genEllipticPath:
 * Approximate an elliptical arc via Béziers of degree 3
 * The path begins and ends with line segments to the center of the ellipse.
 * Returned path must be freed by the caller.
 */
static Ppolyline_t *genEllipticPath(ellipse_t * ep) {
    double dEta;
    double etaB;
    double cosEtaB;
    double sinEtaB;
    double aCosEtaB;
    double bSinEtaB;
    double aSinEtaB;
    double bCosEtaB;
    double xB;
    double yB;
    double xBDot;
    double yBDot;
    double t;
    double alpha;
    Ppolyline_t *polypath = gv_alloc(sizeof(Ppolyline_t));

    static const double THRESHOLD = 0.00001; // quality of approximation

    // find the number of Bézier curves needed
    bool found = false;
    int i, n = 1;
    while (!found && n < 1024) {
	double diffEta = (ep->eta2 - ep->eta1) / n;
	if (diffEta <= 0.5 * M_PI) {
	    double etaOne = ep->eta1;
	    found = true;
	    for (i = 0; found && i < n; ++i) {
		double etaA = etaOne;
		etaOne += diffEta;
		found = estimateError(ep, etaA, etaOne) <= THRESHOLD;
	    }
	}
	n = n << 1;
    }

    dEta = (ep->eta2 - ep->eta1) / n;
    etaB = ep->eta1;

    cosEtaB = cos(etaB);
    sinEtaB = sin(etaB);
    aCosEtaB = ep->a * cosEtaB;
    bSinEtaB = ep->b * sinEtaB;
    aSinEtaB = ep->a * sinEtaB;
    bCosEtaB = ep->b * cosEtaB;
    xB = ep->cx + aCosEtaB;
    yB = ep->cy + bSinEtaB;
    xBDot = -aSinEtaB;
    yBDot = bCosEtaB;

    bezier_path_t bezier_path = {0};
    moveTo(&bezier_path, ep->cx, ep->cy);
    lineTo(&bezier_path, xB, yB);

    t = tan(0.5 * dEta);
    alpha = sin(dEta) * (sqrt(4 + 3 * t * t) - 1) / 3;

    for (i = 0; i < n; ++i) {

	double xA = xB;
	double yA = yB;
	double xADot = xBDot;
	double yADot = yBDot;

	etaB += dEta;
	cosEtaB = cos(etaB);
	sinEtaB = sin(etaB);
	aCosEtaB = ep->a * cosEtaB;
	bSinEtaB = ep->b * sinEtaB;
	aSinEtaB = ep->a * sinEtaB;
	bCosEtaB = ep->b * cosEtaB;
	xB = ep->cx + aCosEtaB;
	yB = ep->cy + bSinEtaB;
	xBDot = -aSinEtaB;
	yBDot = bCosEtaB;

	curveTo(&bezier_path, xA + alpha * xADot, yA + alpha * yADot,
	        xB - alpha * xBDot, yB - alpha * yBDot, xB, yB);
    }

    endPath(&bezier_path);

    LIST_DETACH(&bezier_path, &polypath->ps, &polypath->pn);

    return polypath;
}

/* ellipticWedge:
 * Return a cubic Bézier for an elliptical wedge, with center ctr, x and y
 * semi-axes xsemi and ysemi, start angle angle0 and end angle angle1.
 * This includes beginning and ending line segments to the ellipse center.
 * Calling function must free storage of returned path.
 */
Ppolyline_t *ellipticWedge(pointf ctr, double xsemi, double ysemi,
			   double angle0, double angle1)
{
    ellipse_t ell;
    Ppolyline_t *pp;

    initEllipse(&ell, ctr.x, ctr.y, xsemi, ysemi, angle0, angle1);
    pp = genEllipticPath(&ell);
    return pp;
}