1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/// @file
/// API geomprocs.h
/// @ingroup common_utils
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
/* geometric functions (e.g. on points and boxes) with application to, but
* no specific dependence on graphs */
#include "config.h"
#include <assert.h>
#include <common/geom.h>
#include <common/geomprocs.h>
#include <math.h>
#include <stdbool.h>
#include <util/unreachable.h>
/*
*--------------------------------------------------------------
*
* lineToBox --
*
* Determine whether a line lies entirely inside, entirely
* outside, or overlapping a given rectangular area.
*
* Results:
* -1 is returned if the line given by p and q
* is entirely outside the rectangle given by b.
* 0 is returned if the polygon overlaps the rectangle, and
* 1 is returned if the polygon is entirely inside the rectangle.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
/* This code steals liberally from algorithms in tk/generic/tkTrig.c -- jce */
int lineToBox(pointf p, pointf q, boxf b)
{
/*
* First check the two points individually to see whether they
* are inside the rectangle or not.
*/
bool inside1 = INSIDE(p, b);
bool inside2 = INSIDE(q, b);
if (inside1 != inside2) {
return 0;
}
if (inside1 && inside2) {
return 1;
}
/*
* Both points are outside the rectangle, but still need to check
* for intersections between the line and the rectangle. Horizontal
* and vertical lines are particularly easy, so handle them
* separately.
*/
if (p.x == q.x) {
// vertical line
if (((p.y >= b.LL.y) ^ (q.y >= b.LL.y)) && BETWEEN(b.LL.x, p.x, b.UR.x)) {
return 0;
}
} else if (p.y == q.y) {
// horizontal line
if (((p.x >= b.LL.x) ^ (q.x >= b.LL.x)) && BETWEEN(b.LL.y, p.y, b.UR.y)) {
return 0;
}
} else {
double m, x, y;
/*
* Diagonal line. Compute slope of line and use
* for intersection checks against each of the
* sides of the rectangle: left, right, bottom, top.
*/
m = (q.y - p.y)/(q.x - p.x);
double low = fmin(p.x, q.x);
double high = fmax(p.x, q.x);
// left edge
y = p.y + (b.LL.x - p.x)*m;
if (BETWEEN(low, b.LL.x, high) && BETWEEN(b.LL.y, y, b.UR.y)) {
return 0;
}
// right edge
y += (b.UR.x - b.LL.x)*m;
if (BETWEEN(b.LL.y, y, b.UR.y) && BETWEEN(low, b.UR.x, high)) {
return 0;
}
// bottom edge
low = fmin(p.y, q.y);
high = fmax(p.y, q.y);
x = p.x + (b.LL.y - p.y)/m;
if (BETWEEN(b.LL.x, x, b.UR.x) && BETWEEN(low, b.LL.y, high)) {
return 0;
}
// top edge
x += (b.UR.y - b.LL.y)/m;
if (BETWEEN(b.LL.x, x, b.UR.x) && BETWEEN(low, b.UR.y, high)) {
return 0;
}
}
return -1;
}
void rect2poly(pointf *p)
{
p[3].x = p[2].x = p[1].x;
p[2].y = p[1].y;
p[3].y = p[0].y;
p[1].x = p[0].x;
}
pointf cwrotatepf(pointf p, int cwrot)
{
assert(cwrot == 0 || cwrot == 90 || cwrot == 180 || cwrot == 270);
switch (cwrot) {
case 0:
break;
case 90:
return (pointf){.x = p.y, .y = -p.x};
case 180:
return (pointf){.x = p.x, .y = -p.y};
case 270:
return exch_xyf(p);
default:
UNREACHABLE();
}
return p;
}
pointf ccwrotatepf(pointf p, int ccwrot)
{
assert(ccwrot == 0 || ccwrot == 90 || ccwrot == 180 || ccwrot == 270);
switch (ccwrot) {
case 0:
break;
case 90:
return perp(p);
case 180:
return (pointf){.x = p.x, .y = -p.y};
case 270:
return exch_xyf(p);
default:
UNREACHABLE();
}
return p;
}
boxf flip_rec_boxf(boxf b, pointf p)
{
/* flip box */
boxf r = {.LL = exch_xyf(b.LL), .UR = exch_xyf(b.UR)};
/* move box */
r.LL = add_pointf(r.LL, p);
r.UR = add_pointf(r.UR, p);
return r;
}
#define SMALL 0.0000000001
/* ptToLine2:
* Return distance from point p to line a-b squared.
*/
double ptToLine2 (pointf a, pointf b, pointf p)
{
double dx = b.x-a.x;
double dy = b.y-a.y;
double a2 = (p.y-a.y)*dx - (p.x-a.x)*dy;
a2 *= a2; /* square - ensures that it is positive */
if (a2 < SMALL) return 0.; /* avoid 0/0 problems */
return a2 / (dx*dx + dy*dy);
}
#define dot(v,w) (v.x*w.x+v.y*w.y)
/* line_intersect:
* Computes intersection of lines a-b and c-d, returning intersection
* point in *p.
* Returns 0 if no intersection (lines parallel), 1 otherwise.
*/
int line_intersect (pointf a, pointf b, pointf c, pointf d, pointf* p)
{
pointf mv = sub_pointf(b,a);
pointf lv = sub_pointf(d,c);
pointf ln = perp (lv);
double lc = -dot(ln,c);
double dt = dot(ln,mv);
if (fabs(dt) < SMALL) return 0;
*p = sub_pointf(a,scale((dot(ln,a)+lc)/dt,mv));
return 1;
}
|