1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
/// @file
/// @ingroup common_render
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include "config.h"
#include <assert.h>
#include <common/geomprocs.h>
#include <common/render.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <pathplan/pathplan.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <util/agxbuf.h>
#include <util/alloc.h>
#include <util/debug.h>
#include <util/gv_math.h>
#include <util/list.h>
#include <util/prisize_t.h>
static int nedges; ///< total no. of edges used in routing
static size_t nboxes; ///< total no. of boxes used in routing
static int routeinit;
static int checkpath(size_t, boxf *, path *);
static void printpath(path * pp);
#ifdef DEBUG
static void printboxes(size_t boxn, boxf *boxes) {
pointf ll, ur;
for (size_t bi = 0; bi < boxn; bi++) {
ll = boxes[bi].LL, ur = boxes[bi].UR;
agxbuf buf = {0};
agxbprint(&buf, "%.0f %.0f %.0f %.0f pathbox", ll.x, ll.y, ur.x, ur.y);
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
}
}
#if DEBUG > 1
static void psprintpolypts(Ppoint_t * p, int sz)
{
int i;
fprintf(stderr, "%%!\n");
fprintf(stderr, "%% constraint poly\n");
fprintf(stderr, "newpath\n");
for (i = 0; i < sz; i++)
fprintf(stderr, "%f %f %s\n", p[i].x, p[i].y, i == 0 ? "moveto" : "lineto");
fprintf(stderr, "closepath stroke\n");
}
static void psprintpoint(point p)
{
fprintf(stderr, "gsave\n");
fprintf(stderr,
"newpath %d %d moveto %d %d 2 0 360 arc closepath fill stroke\n",
p.x, p.y, p.x, p.y);
fprintf(stderr, "/Times-Roman findfont 4 scalefont setfont\n");
fprintf(stderr, "%d %d moveto (\\(%d,%d\\)) show\n", p.x + 5, p.y + 5,
p.x, p.y);
fprintf(stderr, "grestore\n");
}
static void psprintpointf(pointf p)
{
fprintf(stderr, "gsave\n");
fprintf(stderr,
"newpath %.5g %.5g moveto %.5g %.5g 2 0 360 arc closepath fill stroke\n",
p.x, p.y, p.x, p.y);
fprintf(stderr, "/Times-Roman findfont 4 scalefont setfont\n");
fprintf(stderr, "%.5g %.5g moveto (\\(%.5g,%.5g\\)) show\n", p.x + 5, p.y + 5,
p.x, p.y);
fprintf(stderr, "grestore\n");
}
#endif
static void psprintspline(Ppolyline_t spl)
{
LIST_APPEND(&Show_boxes, gv_strdup("%%!"));
LIST_APPEND(&Show_boxes, gv_strdup("%% spline"));
LIST_APPEND(&Show_boxes, gv_strdup("gsave 1 0 0 setrgbcolor newpath"));
for (size_t i = 0; i < spl.pn; i++) {
agxbuf buf = {0};
agxbprint(&buf, "%f %f %s", spl.ps[i].x, spl.ps[i].y,
i == 0 ? "moveto" : (i % 3 == 0 ? "curveto" : ""));
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
}
LIST_APPEND(&Show_boxes, gv_strdup("stroke grestore"));
}
static void psprintline(Ppolyline_t pl)
{
LIST_APPEND(&Show_boxes, gv_strdup("%%!"));
LIST_APPEND(&Show_boxes, gv_strdup("%% line"));
LIST_APPEND(&Show_boxes, gv_strdup("gsave 0 0 1 setrgbcolor newpath"));
for (size_t i = 0; i < pl.pn; i++) {
agxbuf buf = {0};
agxbprint(&buf, "%f %f %s", pl.ps[i].x, pl.ps[i].y,
i == 0 ? "moveto" : "lineto");
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
}
LIST_APPEND(&Show_boxes, gv_strdup("stroke grestore"));
}
static void psprintpoly(Ppoly_t p)
{
char* pfx;
LIST_APPEND(&Show_boxes, gv_strdup("%% poly list"));
LIST_APPEND(&Show_boxes, gv_strdup("gsave 0 1 0 setrgbcolor"));
for (size_t bi = 0; bi < p.pn; bi++) {
const pointf tail = p.ps[bi];
const pointf head = p.ps[(bi + 1) % p.pn];
if (fabs(tail.x - head.x) < 1 && fabs(tail.y - head.y) < 1) pfx = "%%";
else pfx ="";
agxbuf buf = {0};
agxbprint(&buf, "%s%.0f %.0f %.0f %.0f makevec", pfx, tail.x, tail.y, head.x,
head.y);
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
}
LIST_APPEND(&Show_boxes, gv_strdup("grestore"));
}
static void psprintboxes(size_t boxn, boxf *boxes) {
pointf ll, ur;
LIST_APPEND(&Show_boxes, gv_strdup("%% box list"));
LIST_APPEND(&Show_boxes, gv_strdup("gsave 0 1 0 setrgbcolor"));
for (size_t bi = 0; bi < boxn; bi++) {
ll = boxes[bi].LL, ur = boxes[bi].UR;
agxbuf buf = {0};
agxbprint(&buf, "newpath\n%.0f %.0f moveto", ll.x, ll.y);
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
agxbprint(&buf, "%.0f %.0f lineto", ll.x, ur.y);
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
agxbprint(&buf, "%.0f %.0f lineto", ur.x, ur.y);
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
agxbprint(&buf, "%.0f %.0f lineto", ur.x, ll.y);
LIST_APPEND(&Show_boxes, agxbdisown(&buf));
LIST_APPEND(&Show_boxes, gv_strdup("closepath stroke"));
}
LIST_APPEND(&Show_boxes, gv_strdup("grestore"));
}
static void psprintinit (int begin)
{
if (begin)
LIST_APPEND(&Show_boxes, gv_strdup("dbgstart"));
else
LIST_APPEND(&Show_boxes, gv_strdup("grestore"));
}
static bool debugleveln(edge_t* realedge, int i)
{
return GD_showboxes(agraphof(aghead(realedge))) == i ||
GD_showboxes(agraphof(agtail(realedge))) == i ||
ED_showboxes(realedge) == i ||
ND_showboxes(aghead(realedge)) == i ||
ND_showboxes(agtail(realedge)) == i;
}
#endif /* DEBUG */
/// Given a simple (ccw) polygon, route an edge from tp to hp.
pointf *simpleSplineRoute(pointf tp, pointf hp, Ppoly_t poly, size_t *n_spl_pts,
int polyline) {
Ppolyline_t pl, spl;
Ppoint_t eps[2];
eps[0].x = tp.x;
eps[0].y = tp.y;
eps[1].x = hp.x;
eps[1].y = hp.y;
if (Pshortestpath(&poly, eps, &pl) < 0)
return NULL;
if (polyline)
make_polyline (pl, &spl);
else {
// polygon edges passed to Proutespline
Pedge_t *edges = gv_calloc(poly.pn, sizeof(Pedge_t));
for (size_t i = 0; i < poly.pn; i++) {
edges[i].a = poly.ps[i];
edges[i].b = poly.ps[(i + 1) % poly.pn];
}
if (Proutespline(edges, poly.pn, pl, (Pvector_t[2]){0}, &spl) < 0) {
free(edges);
return NULL;
}
free(edges);
}
pointf *ps = calloc(spl.pn, sizeof(ps[0]));
if (ps == NULL) {
agerrorf("cannot allocate ps\n");
return NULL;
}
for (size_t i = 0; i < spl.pn; i++) {
ps[i] = spl.ps[i];
}
*n_spl_pts = spl.pn;
return ps;
}
/** Data initialized once until matching call to routeplineterm
* Allows recursive calls to dot
*/
int
routesplinesinit(void)
{
if (++routeinit > 1) return 0;
#ifdef DEBUG
LIST_FREE(&Show_boxes);
#endif
nedges = 0;
nboxes = 0;
if (Verbose)
start_timer();
return 0;
}
void routesplinesterm(void)
{
if (--routeinit > 0) return;
GV_DEBUG("routesplines: %d edges, %" PRISIZE_T " boxes %.2f sec",
nedges, nboxes, elapsed_sec());
}
static void limitBoxes(boxf *boxes, size_t boxn, const pointf *pps, size_t pn,
double delta) {
double t;
pointf sp[4];
const double num_div = delta * (double)boxn;
for (size_t splinepi = 0; splinepi + 3 < pn; splinepi += 3) {
for (double si = 0; si <= num_div; si++) {
t = si / num_div;
sp[0] = pps[splinepi];
sp[1] = pps[splinepi + 1];
sp[2] = pps[splinepi + 2];
sp[3] = pps[splinepi + 3];
sp[0].x += t * (sp[1].x - sp[0].x);
sp[0].y += t * (sp[1].y - sp[0].y);
sp[1].x += t * (sp[2].x - sp[1].x);
sp[1].y += t * (sp[2].y - sp[1].y);
sp[2].x += t * (sp[3].x - sp[2].x);
sp[2].y += t * (sp[3].y - sp[2].y);
sp[0].x += t * (sp[1].x - sp[0].x);
sp[0].y += t * (sp[1].y - sp[0].y);
sp[1].x += t * (sp[2].x - sp[1].x);
sp[1].y += t * (sp[2].y - sp[1].y);
sp[0].x += t * (sp[1].x - sp[0].x);
sp[0].y += t * (sp[1].y - sp[0].y);
for (size_t bi = 0; bi < boxn; bi++) {
/* this tested ok on 64bit machines, but on 32bit we need this FUDGE
* or graphs/directed/records.gv fails */
#define FUDGE .0001
if (sp[0].y <= boxes[bi].UR.y+FUDGE && sp[0].y >= boxes[bi].LL.y-FUDGE) {
boxes[bi].LL.x = fmin(boxes[bi].LL.x, sp[0].x);
boxes[bi].UR.x = fmax(boxes[bi].UR.x, sp[0].x);
}
}
}
}
}
#define INIT_DELTA 10
#define LOOP_TRIES 15 /* number of times to try to limiting boxes to regain space, using smaller divisions */
/** Route a path using the path info in pp. This includes start and end points
* plus a collection of contiguous boxes containing the terminal points. The
* boxes are converted into a containing polygon. A shortest path is constructed
* within the polygon from between the terminal points. If polyline is true,
* this path is converted to a spline representation. Otherwise, we call the
* path planner to convert the polyline into a smooth spline staying within the
* polygon. In both cases, the function returns an array of the computed control
* points. The number of these points is given in npoints.
*
* During cleanup, the function determines the x-extent of the spline in the box, so
* the box can be shrunk to the minimum width. The extra space can then be used by other
* edges.
*
* If a catastrophic error, return NULL and npoints is 0.
*/
static pointf *routesplines_(path *pp, size_t *npoints, int polyline) {
Ppoly_t poly;
Ppolyline_t pl, spl;
Ppoint_t eps[2];
int prev, next;
boxf *boxes;
edge_t* realedge;
bool flip;
int loopcnt;
bool unbounded;
*npoints = 0;
nedges++;
nboxes += pp->nbox;
for (realedge = pp->data;
realedge && ED_edge_type(realedge) != NORMAL;
realedge = ED_to_orig(realedge));
if (!realedge) {
agerrorf("in routesplines, cannot find NORMAL edge\n");
return NULL;
}
boxes = pp->boxes;
const size_t boxn = pp->nbox;
if (checkpath(boxn, boxes, pp))
return NULL;
#ifdef DEBUG
if (debugleveln(realedge, 1))
printboxes(boxn, boxes);
if (debugleveln(realedge, 3)) {
psprintinit(1);
psprintboxes(boxn, boxes);
}
#endif
// vertices of polygon defined by boxes
Ppoint_t *polypoints = gv_calloc(boxn * 8, sizeof(Ppoint_t));
if (boxn > 1 && boxes[0].LL.y > boxes[1].LL.y) {
flip = true;
for (size_t bi = 0; bi < boxn; bi++) {
double v = boxes[bi].UR.y;
boxes[bi].UR.y = -1*boxes[bi].LL.y;
boxes[bi].LL.y = -v;
}
}
else flip = false;
size_t pi;
if (agtail(realedge) != aghead(realedge)) {
/* I assume that the path goes either down only or
up - right - down */
size_t bi;
for (bi = 0, pi = 0; bi < boxn; bi++) {
next = prev = 0;
if (bi > 0)
prev = boxes[bi].LL.y > boxes[bi - 1].LL.y ? -1 : 1;
if (bi + 1 < boxn)
next = boxes[bi + 1].LL.y > boxes[bi].LL.y ? 1 : -1;
if (prev != next) {
if (next == -1 || prev == 1) {
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].UR.y;
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].LL.y;
} else {
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].LL.y;
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].UR.y;
}
}
else if (prev == 0) { /* single box */
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].UR.y;
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].LL.y;
}
else {
if (!(prev == -1 && next == -1)) {
free(polypoints);
agerrorf("in routesplines, illegal values of prev %d and next %d, line %d\n", prev, next, __LINE__);
return NULL;
}
}
}
for (bi = boxn - 1; bi != SIZE_MAX; bi--) {
next = prev = 0;
if (bi + 1 < boxn)
prev = boxes[bi].LL.y > boxes[bi + 1].LL.y ? -1 : 1;
if (bi > 0)
next = boxes[bi - 1].LL.y > boxes[bi].LL.y ? 1 : -1;
if (prev != next) {
if (next == -1 || prev == 1 ) {
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].UR.y;
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].LL.y;
} else {
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].LL.y;
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].UR.y;
}
}
else if (prev == 0) { /* single box */
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].LL.y;
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].UR.y;
}
else {
if (!(prev == -1 && next == -1)) {
/* it went badly, e.g. degenerate box in boxlist */
free(polypoints);
agerrorf("in routesplines, illegal values of prev %d and next %d, line %d\n", prev, next, __LINE__);
return NULL; /* for correctness sake, it's best to just stop */
}
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].LL.y;
polypoints[pi].x = boxes[bi].UR.x;
polypoints[pi++].y = boxes[bi].UR.y;
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].UR.y;
polypoints[pi].x = boxes[bi].LL.x;
polypoints[pi++].y = boxes[bi].LL.y;
}
}
}
else {
free(polypoints);
agerrorf("in routesplines, edge is a loop at %s\n", agnameof(aghead(realedge)));
return NULL;
}
if (flip) {
for (size_t bi = 0; bi < boxn; bi++) {
double v = boxes[bi].UR.y;
boxes[bi].UR.y = -1*boxes[bi].LL.y;
boxes[bi].LL.y = -v;
}
for (size_t i = 0; i < pi; i++)
polypoints[i].y *= -1;
}
static const double INITIAL_LLX = DBL_MAX;
static const double INITIAL_URX = -DBL_MAX;
for (size_t bi = 0; bi < boxn; bi++) {
boxes[bi].LL.x = INITIAL_LLX;
boxes[bi].UR.x = INITIAL_URX;
}
poly.ps = polypoints, poly.pn = pi;
eps[0].x = pp->start.p.x, eps[0].y = pp->start.p.y;
eps[1].x = pp->end.p.x, eps[1].y = pp->end.p.y;
if (Pshortestpath(&poly, eps, &pl) < 0) {
free(polypoints);
agerrorf("in routesplines, Pshortestpath failed\n");
return NULL;
}
#ifdef DEBUG
if (debugleveln(realedge, 3)) {
psprintpoly(poly);
psprintline(pl);
}
#endif
if (polyline) {
make_polyline (pl, &spl);
}
else {
Pedge_t *edges = gv_calloc(poly.pn, sizeof(Pedge_t));
for (size_t edgei = 0; edgei < poly.pn; edgei++) {
edges[edgei].a = polypoints[edgei];
edges[edgei].b = polypoints[(edgei + 1) % poly.pn];
}
Pvector_t evs[2] = {0};
if (pp->start.constrained) {
evs[0].x = cos(pp->start.theta);
evs[0].y = sin(pp->start.theta);
}
if (pp->end.constrained) {
evs[1].x = -cos(pp->end.theta);
evs[1].y = -sin(pp->end.theta);
}
if (Proutespline(edges, poly.pn, pl, evs, &spl) < 0) {
free(edges);
free(polypoints);
agerrorf("in routesplines, Proutespline failed\n");
return NULL;
}
free(edges);
#ifdef DEBUG
if (debugleveln(realedge, 3)) {
psprintspline(spl);
psprintinit(0);
}
#endif
}
pointf *ps = calloc(spl.pn, sizeof(ps[0]));
if (ps == NULL) {
free(polypoints);
agerrorf("cannot allocate ps\n");
return NULL; /* Bailout if no memory left */
}
unbounded = true;
for (size_t splinepi = 0; splinepi < spl.pn; splinepi++) {
ps[splinepi] = spl.ps[splinepi];
}
{
// does the spline go straight left/right?
bool is_horizontal = spl.pn > 0;
for (size_t i = 0; i < spl.pn; ++i) {
if (fabs(ps[0].y - ps[i].y) > FUDGE) {
is_horizontal = false;
break;
}
}
if (is_horizontal) {
GV_INFO("spline [%.03f, %.03f] -- [%.03f, %.03f] is horizontal;"
" will be trivially bounded", ps[0].x, ps[0].y, ps[spl.pn - 1].x,
ps[spl.pn - 1].y);
}
// does the spline go straight up/down?
bool is_vertical = spl.pn > 0;
for (size_t i = 0; i < spl.pn; ++i) {
if (fabs(ps[0].x - ps[i].x) > FUDGE) {
is_vertical = false;
break;
}
}
if (is_vertical) {
GV_INFO("spline [%.03f, %.03f] -- [%.03f, %.03f] is vertical;"
" will be trivially bounded", ps[0].x, ps[0].y, ps[spl.pn - 1].x,
ps[spl.pn - 1].y);
}
// if the spline is horizontal or vertical, the `limitBoxes` loop will not
// converge, but we know the expected outcome trivially
if (is_horizontal || is_vertical) {
for (size_t i = 0; i < boxn; ++i) {
boxes[i].LL.x = ps[0].x;
boxes[i].UR.x = ps[0].x;
}
unbounded = false;
}
}
double delta = INIT_DELTA;
for (loopcnt = 0; unbounded && loopcnt < LOOP_TRIES; loopcnt++) {
limitBoxes(boxes, boxn, ps, spl.pn, delta);
/* The following check is necessary because if a box is not very
* high, it is possible that the sampling above might miss it.
* Therefore, we make the sample finer until all boxes have
* valid values. cf. bug 456.
*/
size_t bi;
for (bi = 0; bi < boxn; bi++) {
/* these fp equality tests are used only to detect if the
* values have been changed since initialization - ok */
if (is_exactly_equal(boxes[bi].LL.x, INITIAL_LLX) ||
is_exactly_equal(boxes[bi].UR.x, INITIAL_URX)) {
delta *= 2; /* try again with a finer interval */
break;
}
}
if (bi == boxn)
unbounded = false;
}
if (unbounded) {
/* Either an extremely short, even degenerate, box, or some failure with the path
* planner causing the spline to miss some boxes. In any case, use the shortest path
* to bound the boxes. This will probably mean a bad edge, but we avoid an infinite
* loop and we can see the bad edge, and even use the showboxes scaffolding.
*/
Ppolyline_t polyspl;
agwarningf("Unable to reclaim box space in spline routing for edge \"%s\" -> \"%s\". Something is probably seriously wrong.\n", agnameof(agtail(realedge)), agnameof(aghead(realedge)));
make_polyline (pl, &polyspl);
limitBoxes(boxes, boxn, polyspl.ps, polyspl.pn, INIT_DELTA);
}
*npoints = spl.pn;
#ifdef DEBUG
if (GD_showboxes(agraphof(aghead(realedge))) == 2 ||
GD_showboxes(agraphof(agtail(realedge))) == 2 ||
ED_showboxes(realedge) == 2 ||
ND_showboxes(aghead(realedge)) == 2 ||
ND_showboxes(agtail(realedge)) == 2)
printboxes(boxn, boxes);
#endif
free(polypoints);
return ps;
}
pointf *routesplines(path *pp, size_t *npoints) {
return routesplines_(pp, npoints, 0);
}
pointf *routepolylines(path *pp, size_t *npoints) {
return routesplines_(pp, npoints, 1);
}
static double overlap(double i0, double i1, double j0, double j1) {
if (i1 <= j0)
return 0;
if (i0 >= j1)
return 0;
// does the first interval subsume the second?
if (i0 <= j0 && i1 >= j1)
return i1 - i0;
// does the second interval subsume the first?
if (j0 <= i0 && j1 >= i1)
return j1 - j0;
if (j0 <= i0 && i0 <= j1)
return j1 - i0;
assert(j0 <= i1 && i1 <= j1);
return i1 - j0;
}
/*
* repairs minor errors in the boxpath, such as boxes not joining
* or slightly intersecting. it's sort of the equivalent of the
* audit process in the 5E control program - if you've given up on
* fixing all the bugs, at least try to engineer around them!
* in postmodern CS, we could call this "self-healing code."
*
* Return 1 on failure; 0 on success.
*/
static int checkpath(size_t boxn, boxf *boxes, path *thepath) {
boxf *ba, *bb;
int errs, l, r, d, u;
/* remove degenerate boxes. */
size_t i = 0;
for (size_t bi = 0; bi < boxn; bi++) {
if (fabs(boxes[bi].LL.y - boxes[bi].UR.y) < .01)
continue;
if (fabs(boxes[bi].LL.x - boxes[bi].UR.x) < .01)
continue;
boxes[i] = boxes[bi];
i++;
}
boxn = i;
ba = &boxes[0];
if (ba->LL.x > ba->UR.x || ba->LL.y > ba->UR.y) {
agerrorf("in checkpath, box 0 has LL coord > UR coord\n");
printpath(thepath);
return 1;
}
for (size_t bi = 0; bi + 1 < boxn; bi++) {
ba = &boxes[bi], bb = &boxes[bi + 1];
if (bb->LL.x > bb->UR.x || bb->LL.y > bb->UR.y) {
agerrorf("in checkpath, box %" PRISIZE_T " has LL coord > UR coord\n",
bi + 1);
printpath(thepath);
return 1;
}
l = ba->UR.x < bb->LL.x ? 1 : 0;
r = ba->LL.x > bb->UR.x ? 1 : 0;
d = ba->UR.y < bb->LL.y ? 1 : 0;
u = ba->LL.y > bb->UR.y ? 1 : 0;
errs = l + r + d + u;
if (errs > 0 && Verbose) {
fprintf(stderr, "in checkpath, boxes %" PRISIZE_T " and %" PRISIZE_T
" don't touch\n", bi, bi + 1);
printpath(thepath);
}
if (errs > 0) {
double xy;
if (l == 1)
xy = ba->UR.x, ba->UR.x = bb->LL.x, bb->LL.x = xy, l = 0;
else if (r == 1)
xy = ba->LL.x, ba->LL.x = bb->UR.x, bb->UR.x = xy, r = 0;
else if (d == 1)
xy = ba->UR.y, ba->UR.y = bb->LL.y, bb->LL.y = xy, d = 0;
else if (u == 1)
xy = ba->LL.y, ba->LL.y = bb->UR.y, bb->UR.y = xy, u = 0;
for (int j = 0; j < errs - 1; j++) {
if (l == 1)
xy = (ba->UR.x + bb->LL.x) / 2.0 + 0.5, ba->UR.x =
bb->LL.x = xy, l = 0;
else if (r == 1)
xy = (ba->LL.x + bb->UR.x) / 2.0 + 0.5, ba->LL.x =
bb->UR.x = xy, r = 0;
else if (d == 1)
xy = (ba->UR.y + bb->LL.y) / 2.0 + 0.5, ba->UR.y =
bb->LL.y = xy, d = 0;
else if (u == 1)
xy = (ba->LL.y + bb->UR.y) / 2.0 + 0.5, ba->LL.y =
bb->UR.y = xy, u = 0;
}
}
/* check for overlapping boxes */
double xoverlap = overlap(ba->LL.x, ba->UR.x, bb->LL.x, bb->UR.x);
double yoverlap = overlap(ba->LL.y, ba->UR.y, bb->LL.y, bb->UR.y);
if (xoverlap > 0 && yoverlap > 0) {
if (xoverlap < yoverlap) {
if (ba->UR.x - ba->LL.x > bb->UR.x - bb->LL.x) {
/* take space from ba */
if (ba->UR.x < bb->UR.x)
ba->UR.x = bb->LL.x;
else
ba->LL.x = bb->UR.x;
} else {
/* take space from bb */
if (ba->UR.x < bb->UR.x)
bb->LL.x = ba->UR.x;
else
bb->UR.x = ba->LL.x;
}
} else { /* symmetric for y coords */
if (ba->UR.y - ba->LL.y > bb->UR.y - bb->LL.y) {
/* take space from ba */
if (ba->UR.y < bb->UR.y)
ba->UR.y = bb->LL.y;
else
ba->LL.y = bb->UR.y;
} else {
/* take space from bb */
if (ba->UR.y < bb->UR.y)
bb->LL.y = ba->UR.y;
else
bb->UR.y = ba->LL.y;
}
}
}
}
if (thepath->start.p.x < boxes[0].LL.x
|| thepath->start.p.x > boxes[0].UR.x
|| thepath->start.p.y < boxes[0].LL.y
|| thepath->start.p.y > boxes[0].UR.y) {
thepath->start.p.x = fmax(thepath->start.p.x, boxes[0].LL.x);
thepath->start.p.x = fmin(thepath->start.p.x, boxes[0].UR.x);
thepath->start.p.y = fmax(thepath->start.p.y, boxes[0].LL.y);
thepath->start.p.y = fmin(thepath->start.p.y, boxes[0].UR.y);
}
if (thepath->end.p.x < boxes[boxn - 1].LL.x
|| thepath->end.p.x > boxes[boxn - 1].UR.x
|| thepath->end.p.y < boxes[boxn - 1].LL.y
|| thepath->end.p.y > boxes[boxn - 1].UR.y) {
thepath->end.p.x = fmax(thepath->end.p.x, boxes[boxn - 1].LL.x);
thepath->end.p.x = fmin(thepath->end.p.x, boxes[boxn - 1].UR.x);
thepath->end.p.y = fmax(thepath->end.p.y, boxes[boxn - 1].LL.y);
thepath->end.p.y = fmin(thepath->end.p.y, boxes[boxn - 1].UR.y);
}
return 0;
}
static void printpath(path * pp)
{
fprintf(stderr, "%" PRISIZE_T " boxes:\n", pp->nbox);
for (size_t bi = 0; bi < pp->nbox; bi++)
fprintf(stderr, "%" PRISIZE_T " (%.5g, %.5g), (%.5g, %.5g)\n", bi,
pp->boxes[bi].LL.x, pp->boxes[bi].LL.y,
pp->boxes[bi].UR.x, pp->boxes[bi].UR.y);
fprintf(stderr, "start port: (%.5g, %.5g), tangent angle: %.5g, %s\n",
pp->start.p.x, pp->start.p.y, pp->start.theta,
pp->start.constrained ? "constrained" : "not constrained");
fprintf(stderr, "end port: (%.5g, %.5g), tangent angle: %.5g, %s\n",
pp->end.p.x, pp->end.p.y, pp->end.theta,
pp->end.constrained ? "constrained" : "not constrained");
}
static pointf get_centroid(Agraph_t *g)
{
pointf sum = {0.0, 0.0};
sum.x = (GD_bb(g).LL.x + GD_bb(g).UR.x) / 2.0;
sum.y = (GD_bb(g).LL.y + GD_bb(g).UR.y) / 2.0;
return sum;
}
typedef LIST(node_t *) nodes_t;
static void nodes_delete(nodes_t *pvec) {
if (pvec != NULL) {
LIST_FREE(pvec);
}
free(pvec);
}
typedef LIST(nodes_t *) cycles_t;
static bool cycle_contains_edge(nodes_t *cycle, edge_t *edge) {
node_t* start = agtail(edge);
node_t* end = aghead(edge);
const size_t cycle_len = LIST_SIZE(cycle);
for (size_t i=0; i < cycle_len; ++i) {
const node_t *c_start = LIST_GET(cycle, i == 0 ? cycle_len - 1 : i - 1);
const node_t *c_end = LIST_GET(cycle, i);
if (c_start == start && c_end == end)
return true;
}
return false;
}
static bool is_cycle_unique(cycles_t *cycles, nodes_t *cycle) {
const size_t cycle_len = LIST_SIZE(cycle);
size_t i; //node counter
bool all_items_match;
for (size_t c = 0; c < LIST_SIZE(cycles); ++c) {
nodes_t *cur_cycle = LIST_GET(cycles, c);
const size_t cur_cycle_len = LIST_SIZE(cur_cycle);
//if all the items match in equal length cycles then we're not unique
if (cur_cycle_len == cycle_len) {
all_items_match = true;
for (i=0; i < cur_cycle_len; ++i) {
node_t *cur_cycle_item = LIST_GET(cur_cycle, i);
if (!LIST_CONTAINS(cycle, cur_cycle_item)) {
all_items_match = false;
break;
}
}
if (all_items_match)
return false;
}
}
return true;
}
static void dfs(graph_t *g, node_t *search, nodes_t *visited, node_t *end,
cycles_t *cycles) {
edge_t* e;
node_t* n;
if (LIST_CONTAINS(visited, search)) {
if (search == end) {
if (is_cycle_unique(cycles, visited)) {
nodes_t *cycle = gv_alloc(sizeof(nodes_t));
LIST_COPY(cycle, visited);
LIST_APPEND(cycles, cycle);
}
}
} else {
LIST_APPEND(visited, search);
for (e = agfstout(g, search); e; e = agnxtout(g, e)) {
n = aghead(e);
dfs(g, n, visited, end, cycles);
}
if (!LIST_IS_EMPTY(visited)) {
LIST_DROP_BACK(visited);
}
}
}
// Returns a vec of vec of nodes (aka a vector of cycles)
static cycles_t find_all_cycles(graph_t *g) {
node_t *n;
// vector of vectors of nodes -- AKA cycles to delete
cycles_t alloced_cycles = {.dtor = nodes_delete};
cycles_t cycles = {.dtor = nodes_delete}; // vector of vectors of nodes AKA a vector of cycles
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
nodes_t *cycle = gv_alloc(sizeof(nodes_t));
// keep track of all items we allocate to clean up at the end of this function
LIST_APPEND(&alloced_cycles, cycle);
dfs(g, n, cycle, n, &cycles);
}
LIST_FREE(&alloced_cycles); // cycles contains copied vecs
return cycles;
}
static nodes_t *find_shortest_cycle_with_edge(cycles_t *cycles, edge_t *edge,
size_t min_size) {
nodes_t *shortest = NULL;
for (size_t c = 0; c < LIST_SIZE(cycles); ++c) {
nodes_t *cycle = LIST_GET(cycles, c);
size_t cycle_len = LIST_SIZE(cycle);
if (cycle_len < min_size)
continue;
if (shortest == NULL || LIST_SIZE(shortest) > cycle_len) {
if (cycle_contains_edge(cycle, edge)) {
shortest = cycle;
}
}
}
return shortest;
}
static pointf get_cycle_centroid(graph_t *g, edge_t* edge)
{
cycles_t cycles = find_all_cycles(g);
//find the center of the shortest cycle containing this edge
//cycles of length 2 do their own thing, we want 3 or
nodes_t *cycle = find_shortest_cycle_with_edge(&cycles, edge, 3);
pointf sum = {0.0, 0.0};
if (cycle == NULL) {
LIST_FREE(&cycles);
return get_centroid(g);
}
double cnt = 0;
for (size_t idx = 0; idx < LIST_SIZE(cycle); ++idx) {
node_t *n = LIST_GET(cycle, idx);
sum.x += ND_coord(n).x;
sum.y += ND_coord(n).y;
cnt++;
}
LIST_FREE(&cycles);
sum.x /= cnt;
sum.y /= cnt;
return sum;
}
static void bend(pointf spl[4], pointf centroid)
{
pointf a;
double r;
pointf midpt = mid_pointf(spl[0], spl[3]);
double dist = DIST(spl[3], spl[0]);
r = dist/5.0;
{
double vX = centroid.x - midpt.x;
double vY = centroid.y - midpt.y;
double magV = hypot(vX, vY);
if (magV == 0) return; /* if midpoint == centroid, don't divide by zero */
a.x = midpt.x - vX / magV * r; /* + would be closest point */
a.y = midpt.y - vY / magV * r;
}
/* this can be improved */
spl[1].x = spl[2].x = a.x;
spl[1].y = spl[2].y = a.y;
}
// FIX: handle ports on boundary?
void
makeStraightEdge(graph_t * g, edge_t * e, int et, splineInfo* sinfo)
{
edge_t *e0;
size_t e_cnt = 1;
e0 = e;
while (e0 != ED_to_virt(e0) && (e0 = ED_to_virt(e0))) e_cnt++;
edge_t **edge_list = gv_calloc(e_cnt, sizeof(edge_t *));
e0 = e;
for (size_t i = 0; i < e_cnt; i++) {
edge_list[i] = e0;
e0 = ED_to_virt(e0);
}
assert(e_cnt <= INT_MAX);
makeStraightEdges(g, edge_list, e_cnt, et, sinfo);
free(edge_list);
}
void makeStraightEdges(graph_t *g, edge_t **edge_list, size_t e_cnt, int et,
splineInfo *sinfo) {
pointf dumb[4];
bool curved = et == EDGETYPE_CURVED;
pointf del;
edge_t *e = edge_list[0];
node_t *n = agtail(e);
node_t *head = aghead(e);
dumb[1] = dumb[0] = add_pointf(ND_coord(n), ED_tail_port(e).p);
dumb[2] = dumb[3] = add_pointf(ND_coord(head), ED_head_port(e).p);
if (e_cnt == 1 || Concentrate) {
if (curved) bend(dumb,get_cycle_centroid(g, edge_list[0]));
clip_and_install(e, aghead(e), dumb, 4, sinfo);
addEdgeLabels(e);
return;
}
if (APPROXEQPT(dumb[0], dumb[3], MILLIPOINT)) {
/* degenerate case */
dumb[1] = dumb[0];
dumb[2] = dumb[3];
del.x = 0;
del.y = 0;
}
else {
pointf perp = {
.x = dumb[0].y - dumb[3].y,
.y = dumb[3].x - dumb[0].x
};
double l_perp = hypot(perp.x, perp.y);
int xstep = GD_nodesep(g->root);
assert(e_cnt - 1 <= INT_MAX);
int dx = xstep * (int)(e_cnt - 1) / 2;
dumb[1].x = dumb[0].x + dx * perp.x / l_perp;
dumb[1].y = dumb[0].y + dx * perp.y / l_perp;
dumb[2].x = dumb[3].x + dx * perp.x / l_perp;
dumb[2].y = dumb[3].y + dx * perp.y / l_perp;
del.x = -xstep * perp.x / l_perp;
del.y = -xstep * perp.y / l_perp;
}
for (size_t i = 0; i < e_cnt; i++) {
edge_t *e0 = edge_list[i];
pointf dumber[4];
if (aghead(e0) == head) {
for (size_t j = 0; j < 4; j++) {
dumber[j] = dumb[j];
}
} else {
for (size_t j = 0; j < 4; j++) {
dumber[3 - j] = dumb[j];
}
}
if (et == EDGETYPE_PLINE) {
Ppoint_t pts[] = {dumber[0], dumber[1], dumber[2], dumber[3]};
Ppolyline_t spl, line = {.pn = 4, .ps = pts};
make_polyline (line, &spl);
clip_and_install(e0, aghead(e0), spl.ps, (size_t)spl.pn, sinfo);
}
else
clip_and_install(e0, aghead(e0), dumber, 4, sinfo);
addEdgeLabels(e0);
dumb[1] = add_pointf(dumb[1], del);
dumb[2] = add_pointf(dumb[2], del);
}
}
|