File: tlayout.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (609 lines) | stat: -rw-r--r-- 16,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

/* tlayout.c:
 * Written by Emden R. Gansner
 *
 * Module for initial layout, using point nodes and ports.
 *
 * Note: If interior nodes are not connected, they tend to fly apart,
 * despite being tied to port nodes. This occurs because, as initially
 * coded, as the nodes tend to straighten into a line, the radius
 * grows causing more expansion. Is the problem really here and not
 * with disconnected nodes in xlayout? If here, we can either forbid
 * expansion or eliminate repulsion between nodes only connected
 * via port nodes.
 */

#include "config.h"

/* uses PRIVATE interface */
#define FDP_PRIVATE 1

#include <math.h>
#include <stdbool.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <fdpgen/dbg.h>
#include <fdpgen/grid.h>
#include <neatogen/neato.h>

#ifndef HAVE_SRAND48
#define srand48 srand
#endif

#include <common/globals.h>
#include <fdpgen/tlayout.h>

#define D_useGrid (fdp_parms->useGrid)
#define D_useNew (fdp_parms->useNew)
#define D_numIters (fdp_parms->numIters)
#define D_unscaled (fdp_parms->unscaled)
#define D_C (fdp_parms->C)
#define D_Tfact (fdp_parms->Tfact)
#define D_K (fdp_parms->K)
#define D_T0 (fdp_parms->T0)

/* Actual parameters used; initialized using fdp_parms, then possibly
 * updated with graph-specific values.
 */
typedef struct {
  int useGrid;  /* use grid for speed up */
  int useNew;   /* encode x-K into attractive force */
  long seed;    /* seed for position RNG */
  int numIters; /* actual iterations in layout */
  int maxIters; /* max iterations in layout */
  int unscaled; /* % of iterations used in pass 1 */
  double C;     /* Repulsion factor in xLayout */
  double Tfact; /* scale temp from default expression */
  double K;     /* spring constant; ideal distance */
  double T0;    /* initial temperature */
  int smode;    /* seed mode */
  double Cell;  /* grid cell size */
  double Wd;    /* half-width of boundary */
  double Ht;    /* half-height of boundary */
  int pass1;    /* iterations used in pass 1 */
  int loopcnt;  /* actual iterations in this pass */
} parms_t;

static parms_t parms;

#define T_useGrid (parms.useGrid)
#define T_useNew (parms.useNew)
#define T_seed (parms.seed)
#define T_numIters (parms.numIters)
#define T_maxIters (parms.maxIters)
#define T_unscaled (parms.unscaled)
#define T_C (parms.C)
#define T_Tfact (parms.Tfact)
#define T_K (parms.K)
#define T_T0 (parms.T0)
#define T_smode (parms.smode)
#define T_Cell (parms.Cell)
#define T_Wd (parms.Wd)
#define T_Ht (parms.Ht)
#define T_pass1 (parms.pass1)
#define T_loopcnt (parms.loopcnt)

#define EXPFACTOR 1.2
#define DFLT_maxIters 600
#define DFLT_K 0.3
#define DFLT_Cell 0.0
#define DFLT_seed 1
#define DFLT_smode INIT_RANDOM

static double cool(int t) { return T_T0 * (T_maxIters - t) / T_maxIters; }

static void reset_params(void) { T_T0 = -1.0; }

/* Set parameters for expansion phase based on initial
 * layout parameters. If T0 is not set, we set it here
 * based on the size of the graph. In this case, we
 * return true, so that fdp_tLayout can unset T0, to be
 * reset by a recursive call to fdp_tLayout.
 *
 * @return Does `reset` need to be called later?
 */
static bool init_params(graph_t *g, xparams *xpms) {
  bool ret = false;

  if (T_T0 == -1.0) {
    int nnodes = agnnodes(g);

    T_T0 = T_Tfact * T_K * sqrt(nnodes) / 5;
#ifdef DEBUG
    if (Verbose) {
      prIndent();
      fprintf(stderr, "tlayout %s", agnameof(g));
      fprintf(stderr, "(%s) : T0 %f\n", agnameof(GORIG(g->root)), T_T0);
    }
#endif
    ret = true;
  }

  xpms->T0 = cool(T_pass1);
  xpms->K = T_K;
  xpms->C = T_C;
  xpms->numIters = T_maxIters - T_pass1;

  if (T_numIters >= 0) {
    if (T_numIters <= T_pass1) {
      T_loopcnt = T_numIters;
      xpms->loopcnt = 0;
    } else if (T_numIters <= T_maxIters) {
      T_loopcnt = T_pass1;
      xpms->loopcnt = T_numIters - T_pass1;
    }
  } else {
    T_loopcnt = T_pass1;
    xpms->loopcnt = xpms->numIters;
  }
  return ret;
}

/// initialize parameters based on root graph attributes
void fdp_initParams(graph_t *g) {
  T_useGrid = D_useGrid;
  T_useNew = D_useNew;
  T_numIters = D_numIters;
  T_unscaled = D_unscaled;
  T_Cell = DFLT_Cell;
  T_C = D_C;
  T_Tfact = D_Tfact;
  T_maxIters =
      late_int(g, agattr_text(g, AGRAPH, "maxiter", NULL), DFLT_maxIters, 0);
  D_K = T_K = late_double(g, agattr_text(g, AGRAPH, "K", NULL), DFLT_K, 0.0);
  if (D_T0 == -1.0) {
    T_T0 = late_double(g, agattr_text(g, AGRAPH, "T0", NULL), -1.0, 0.0);
  } else
    T_T0 = D_T0;
  T_seed = DFLT_seed;
  T_smode = setSeed(g, DFLT_smode, &T_seed);
  if (T_smode == INIT_SELF) {
    agwarningf("fdp does not support start=self - ignoring\n");
    T_seed = DFLT_smode;
  }

  T_pass1 = T_unscaled * T_maxIters / 100;

  if (T_useGrid) {
    if (T_Cell <= 0.0)
      T_Cell = 3 * T_K;
  }
#ifdef DEBUG
  if (Verbose) {
    prIndent();
    fprintf(stderr, "Params %s : K %f T0 %f Tfact %f maxIters %d unscaled %d\n",
            agnameof(g), T_K, T_T0, T_Tfact, T_maxIters, T_unscaled);
  }
#endif
}

static void doRep(node_t *p, node_t *q, double xdelta, double ydelta,
                  double dist2) {
  double force;
  double dist;

  while (dist2 == 0.0) {
    xdelta = 5 - rand() % 10;
    ydelta = 5 - rand() % 10;
    dist2 = xdelta * xdelta + ydelta * ydelta;
  }
  if (T_useNew) {
    dist = sqrt(dist2);
    force = T_K * T_K / (dist * dist2);
  } else
    force = T_K * T_K / dist2;
  if (IS_PORT(p) && IS_PORT(q))
    force *= 10.0;
  DISP(q)[0] += xdelta * force;
  DISP(q)[1] += ydelta * force;
  DISP(p)[0] -= xdelta * force;
  DISP(p)[1] -= ydelta * force;
}

/// repulsive force = K × K ÷ d or K × K ÷ d × d
static void applyRep(Agnode_t *p, Agnode_t *q) {
  double xdelta, ydelta;

  xdelta = ND_pos(q)[0] - ND_pos(p)[0];
  ydelta = ND_pos(q)[1] - ND_pos(p)[1];
  doRep(p, q, xdelta, ydelta, xdelta * xdelta + ydelta * ydelta);
}

static void doNeighbor(Grid *grid, int i, int j, node_list *nodes) {
  cell *cellp = findGrid(grid, i, j);
  node_list *qs;
  Agnode_t *p;
  Agnode_t *q;
  double xdelta, ydelta;
  double dist2;

  if (cellp) {
#ifdef DEBUG
    if (Verbose >= 3) {
      prIndent();
      fprintf(stderr, "  doNeighbor (%d,%d) : %d\n", i, j, gLength(cellp));
    }
#endif
    for (; nodes != 0; nodes = nodes->next) {
      p = nodes->node;
      for (qs = cellp->nodes; qs != 0; qs = qs->next) {
        q = qs->node;
        xdelta = (ND_pos(q))[0] - (ND_pos(p))[0];
        ydelta = (ND_pos(q))[1] - (ND_pos(p))[1];
        dist2 = xdelta * xdelta + ydelta * ydelta;
        if (dist2 < T_Cell * T_Cell)
          doRep(p, q, xdelta, ydelta, dist2);
      }
    }
  }
}

static int gridRepulse(void *c, void *g) {
  cell *const cellp = c;
  Grid *const grid = g;
  node_list *nodes = cellp->nodes;
  int i = cellp->p.i;
  int j = cellp->p.j;
  node_list *p;
  node_list *q;

#ifdef DEBUG
  if (Verbose >= 3) {
    prIndent();
    fprintf(stderr, "gridRepulse (%d,%d) : %d\n", i, j, gLength(cellp));
  }
#endif
  for (p = nodes; p != 0; p = p->next) {
    for (q = nodes; q != 0; q = q->next)
      if (p != q)
        applyRep(p->node, q->node);
  }

  doNeighbor(grid, i - 1, j - 1, nodes);
  doNeighbor(grid, i - 1, j, nodes);
  doNeighbor(grid, i - 1, j + 1, nodes);
  doNeighbor(grid, i, j - 1, nodes);
  doNeighbor(grid, i, j + 1, nodes);
  doNeighbor(grid, i + 1, j - 1, nodes);
  doNeighbor(grid, i + 1, j, nodes);
  doNeighbor(grid, i + 1, j + 1, nodes);

  return 0;
}

/* Attractive force = weight × (d × d) ÷ K
 *  or        force = (d - L(e)) × weight(e)
 */
static void applyAttr(Agnode_t *p, Agnode_t *q, Agedge_t *e) {
  double xdelta, ydelta;
  double force;
  double dist;
  double dist2;

  xdelta = ND_pos(q)[0] - ND_pos(p)[0];
  ydelta = ND_pos(q)[1] - ND_pos(p)[1];
  dist2 = xdelta * xdelta + ydelta * ydelta;
  while (dist2 == 0.0) {
    xdelta = 5 - rand() % 10;
    ydelta = 5 - rand() % 10;
    dist2 = xdelta * xdelta + ydelta * ydelta;
  }
  dist = sqrt(dist2);
  if (T_useNew)
    force = ED_factor(e) * (dist - ED_dist(e)) / dist;
  else
    force = ED_factor(e) * dist / ED_dist(e);
  DISP(q)[0] -= xdelta * force;
  DISP(q)[1] -= ydelta * force;
  DISP(p)[0] += xdelta * force;
  DISP(p)[1] += ydelta * force;
}

static void updatePos(Agraph_t *g, double temp, bport_t *pp) {
  Agnode_t *n;
  double temp2;
  double len2;
  double x, y, d;
  double dx, dy;

  temp2 = temp * temp;
  for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
    if (ND_pinned(n) & P_FIX)
      continue;
    dx = DISP(n)[0];
    dy = DISP(n)[1];
    len2 = dx * dx + dy * dy;

    /* limit by temperature */
    if (len2 < temp2) {
      x = ND_pos(n)[0] + dx;
      y = ND_pos(n)[1] + dy;
    } else {
      double fact = temp / sqrt(len2);
      x = ND_pos(n)[0] + dx * fact;
      y = ND_pos(n)[1] + dy * fact;
    }

    /* if ports, limit by boundary */
    if (pp) {
      d = sqrt(x * x / (T_Wd * T_Wd) + y * y / (T_Ht * T_Ht));
      if (IS_PORT(n)) {
        ND_pos(n)[0] = x / d;
        ND_pos(n)[1] = y / d;
      } else if (d >= 1.0) {
        ND_pos(n)[0] = 0.95 * x / d;
        ND_pos(n)[1] = 0.95 * y / d;
      } else {
        ND_pos(n)[0] = x;
        ND_pos(n)[1] = y;
      }
    } else {
      ND_pos(n)[0] = x;
      ND_pos(n)[1] = y;
    }
  }
}

#define FLOOR(d) ((int)floor(d))

static void gAdjust(Agraph_t *g, double temp, bport_t *pp, Grid *grid) {
  Agnode_t *n;
  Agedge_t *e;

  if (temp <= 0.0)
    return;

  clearGrid(grid);

  for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
    DISP(n)[0] = DISP(n)[1] = 0;
    addGrid(grid, FLOOR((ND_pos(n))[0] / T_Cell),
            FLOOR((ND_pos(n))[1] / T_Cell), n);
  }

  for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
    for (e = agfstout(g, n); e; e = agnxtout(g, e))
      if (n != aghead(e))
        applyAttr(n, aghead(e), e);
  }
  walkGrid(grid, gridRepulse);

  updatePos(g, temp, pp);
}

static void adjust(Agraph_t *g, double temp, bport_t *pp) {
  Agnode_t *n;
  Agnode_t *n1;
  Agedge_t *e;

  if (temp <= 0.0)
    return;

  for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
    DISP(n)[0] = DISP(n)[1] = 0;
  }

  for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
    for (n1 = agnxtnode(g, n); n1; n1 = agnxtnode(g, n1)) {
      applyRep(n, n1);
    }
    for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
      if (n != aghead(e))
        applyAttr(n, aghead(e), e);
    }
  }

  updatePos(g, temp, pp);
}

/* Create initial layout of nodes
 * TODO :
 *  Position nodes near neighbors with positions.
 *  Use bbox to reset K.
 */
static pointf initPositions(graph_t *g, bport_t *pp) {
  int nG = agnnodes(g) - NPORTS(g);
  double size;
  Agnode_t *np;
  int n_pos = 0; /* no. of nodes with position info */
  boxf bb = {{0, 0}, {0, 0}};
  pointf ctr; /* center of boundary ellipse */
  long local_seed;
  double PItimes2 = M_PI * 2.0;

  for (np = agfstnode(g); np; np = agnxtnode(g, np)) {
    if (ND_pinned(np)) {
      if (n_pos) {
        bb.LL.x = MIN(ND_pos(np)[0], bb.LL.x);
        bb.LL.y = MIN(ND_pos(np)[1], bb.LL.y);
        bb.UR.x = MAX(ND_pos(np)[0], bb.UR.x);
        bb.UR.y = MAX(ND_pos(np)[1], bb.UR.y);
      } else {
        bb.UR.x = bb.LL.x = ND_pos(np)[0];
        bb.UR.y = bb.LL.y = ND_pos(np)[1];
      }
      n_pos++;
    }
  }

  size = T_K * (sqrt((double)nG) + 1.0);
  T_Wd = T_Ht = EXPFACTOR * (size / 2.0);
  if (n_pos == 1) {
    ctr.x = bb.LL.x;
    ctr.y = bb.LL.y;
  } else if (n_pos > 1) {
    double alpha, area, width, height, quot;
    ctr.x = (bb.LL.x + bb.UR.x) / 2.0;
    ctr.y = (bb.LL.y + bb.UR.y) / 2.0;
    width = EXPFACTOR * (bb.UR.x - bb.LL.x);
    height = EXPFACTOR * (bb.UR.y - bb.LL.y);
    area = 4.0 * T_Wd * T_Ht;
    quot = width * height / area;
    if (quot >= 1.0) { /* If bbox has large enough area, use it */
      T_Wd = width / 2.0;
      T_Ht = height / 2.0;
    } else if (quot > 0.0) { /* else scale up to have enough area */
      quot = 2.0 * sqrt(quot);
      T_Wd = width / quot;
      T_Ht = height / quot;
    } else { /* either width or height is 0 */
      if (width > 0) {
        height = area / width;
        T_Wd = width / 2.0;
        T_Ht = height / 2.0;
      } else if (height > 0) {
        width = area / height;
        T_Wd = width / 2.0;
        T_Ht = height / 2.0;
      }
      /* If width = height = 0, use Wd and Ht as defined above for
       * the case the n_pos == 0.
       */
    }

    /* Construct enclosing ellipse */
    alpha = atan2(T_Ht, T_Wd);
    T_Wd = T_Wd / cos(alpha);
    T_Ht = T_Ht / sin(alpha);
  } else {
    ctr.x = ctr.y = 0;
  }

  /* Set seed value */
  if (T_smode == INIT_RANDOM)
    local_seed = T_seed;
  else {
#if defined(_WIN32)
    local_seed = (long)time(NULL);
#else
    local_seed = getpid() ^ time(NULL);
#endif
  }
  srand48(local_seed);

  /* If ports, place ports on and nodes within an ellipse centered at origin
   * with halfwidth Wd and halfheight Ht.
   * If no ports, place nodes within a rectangle centered at origin
   * with halfwidth Wd and halfheight Ht. Nodes with a given position
   * are translated. Wd and Ht are set to contain all positioned points.
   * The reverse translation will be applied to all
   * nodes at the end of the layout.
   * TODO: place unfixed points using adjacent ports or fixed pts.
   */
  if (pp) {
    while (pp->e) { /* position ports on ellipse */
      np = pp->n;
      ND_pos(np)[0] = T_Wd * cos(pp->alpha) + ctr.x;
      ND_pos(np)[1] = T_Ht * sin(pp->alpha) + ctr.y;
      ND_pinned(np) = P_SET;
      pp++;
    }
    for (np = agfstnode(g); np; np = agnxtnode(g, np)) {
      if (IS_PORT(np))
        continue;
      if (ND_pinned(np)) {
        ND_pos(np)[0] -= ctr.x;
        ND_pos(np)[1] -= ctr.y;
      } else {
        pointf p = {0.0, 0.0};
        int cnt = 0;
        node_t *op;
        edge_t *ep;
        for (ep = agfstedge(g, np); ep; ep = agnxtedge(g, ep, np)) {
          if (aghead(ep) == agtail(ep))
            continue;
          op = aghead(ep) == np ? agtail(ep) : aghead(ep);
          if (!hasPos(op))
            continue;
          if (cnt) {
            p.x = (p.x * cnt + ND_pos(op)[0]) / (cnt + 1);
            p.y = (p.y * cnt + ND_pos(op)[1]) / (cnt + 1);
          } else {
            p.x = ND_pos(op)[0];
            p.y = ND_pos(op)[1];
          }
          cnt++;
        }
        if (cnt > 1) {
          ND_pos(np)[0] = p.x;
          ND_pos(np)[1] = p.y;
        } else if (cnt == 1) {
          ND_pos(np)[0] = 0.98 * p.x + 0.1 * ctr.x;
          ND_pos(np)[1] = 0.9 * p.y + 0.1 * ctr.y;
        } else {
          double angle = PItimes2 * drand48();
          double radius = 0.9 * drand48();
          ND_pos(np)[0] = radius * T_Wd * cos(angle);
          ND_pos(np)[1] = radius * T_Ht * sin(angle);
        }
        ND_pinned(np) = P_SET;
      }
    }
  } else {
    if (n_pos) { /* If positioned nodes */
      for (np = agfstnode(g); np; np = agnxtnode(g, np)) {
        if (ND_pinned(np)) {
          ND_pos(np)[0] -= ctr.x;
          ND_pos(np)[1] -= ctr.y;
        } else {
          ND_pos(np)[0] = T_Wd * (2.0 * drand48() - 1.0);
          ND_pos(np)[1] = T_Ht * (2.0 * drand48() - 1.0);
        }
      }
    } else { /* No ports or positions; place randomly */
      for (np = agfstnode(g); np; np = agnxtnode(g, np)) {
        ND_pos(np)[0] = T_Wd * (2.0 * drand48() - 1.0);
        ND_pos(np)[1] = T_Ht * (2.0 * drand48() - 1.0);
      }
    }
  }

  return ctr;
}

/* Given graph g with ports nodes, layout g respecting ports.
 * If some node have position information, it may be useful to
 * reset temperature and other parameters to reflect this.
 */
void fdp_tLayout(graph_t *g, xparams *xpms) {
  bport_t *const pp = PORTS(g);
  const bool reset = init_params(g, xpms);
  const pointf ctr = initPositions(g, pp);

  if (T_useGrid) {
    Grid *const grid = mkGrid(agnnodes(g));
    adjustGrid(grid, agnnodes(g));
    for (int i = 0; i < T_loopcnt; i++) {
      const double temp = cool(i);
      gAdjust(g, temp, pp, grid);
    }
    delGrid(grid);
  } else {
    for (int i = 0; i < T_loopcnt; i++) {
      const double temp = cool(i);
      adjust(g, temp, pp);
    }
  }

  if (ctr.x != 0.0 || ctr.y != 0.0) {
    for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
      ND_pos(n)[0] += ctr.x;
      ND_pos(n)[1] += ctr.y;
    }
  }
  if (reset)
    reset_params();
}