File: index.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (232 lines) | stat: -rw-r--r-- 5,974 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <stdlib.h>

#include <label/index.h>
#include <stddef.h>
#include <stdio.h>
#include <assert.h>
#include <stdbool.h>
#include <util/alloc.h>

static LeafList_t *RTreeNewLeafList(Leaf_t *lp) {
    LeafList_t *llp = gv_alloc(sizeof(LeafList_t));
    *llp = (LeafList_t){.leaf = lp};
    return llp;
}

static LeafList_t *RTreeLeafListAdd(LeafList_t *llp, Leaf_t *lp) {
    if (!lp)
	return llp;

    LeafList_t *nlp = RTreeNewLeafList(lp);
    nlp->next = llp;
    return nlp;
}

void RTreeLeafListFree(LeafList_t * llp)
{
    while (llp->next) {
	LeafList_t *tlp = llp->next;
	free(llp);
	llp = tlp;
    }
    free(llp);
    return;
}

RTree_t *RTreeOpen(void)
{
    RTree_t *rtp = gv_alloc(sizeof(RTree_t));
    rtp->root = RTreeNewIndex();
    return rtp;
}

/* Make a new index, empty.  Consists of a single node. */
Node_t *RTreeNewIndex(void ) {
    Node_t *x = RTreeNewNode();
    x->level = 0;		/* leaf */
    return x;
}

static void RTreeClose2(RTree_t *rtp, Node_t *n) {
    if (n->level > 0) {
	for (int i = 0; i < NODECARD; i++) {
	    if (!n->branch[i].child)
		continue;
	    RTreeClose2(rtp, n->branch[i].child);
	    free(n->branch[i].child);
	    DisconBranch(n, i);
	}
    } else {
	for (int i = 0; i < NODECARD; i++) {
	    if (!n->branch[i].child)
		continue;
	    DisconBranch(n, i);
	}
    }
}


void RTreeClose(RTree_t *rtp) {
    RTreeClose2(rtp, rtp->root);
    free(rtp->root);
    free(rtp);
}

#ifdef RTDEBUG
/* Print out all the nodes in an index.
** Prints from root downward.
*/
void PrintIndex(Node_t * n)
{
    Node_t *nn;
    assert(n);
    assert(n->level >= 0);

    if (n->level > 0) {
	for (size_t i = 0; i < NODECARD; i++) {
	    if ((nn = n->branch[i].child) != NULL)
		PrintIndex(nn);
	}
    }

    PrintNode(n);
}

/* Print out all the data rectangles in an index.
*/
void PrintData(Node_t * n)
{
    Node_t *nn;
    assert(n);
    assert(n->level >= 0);

    if (n->level == 0)
	PrintNode(n);
    else {
	for (size_t i = 0; i < NODECARD; i++) {
	    if ((nn = n->branch[i].child) != NULL)
		PrintData(nn);
	}
    }
}
#endif

/* RTreeSearch in an index tree or subtree for all data retangles that
** overlap the argument rectangle.
** Returns the number of qualifying data rects.
*/
LeafList_t *RTreeSearch(RTree_t *rtp, Node_t *n, Rect_t r) {
    LeafList_t *llp = 0;

    assert(n);
    assert(n->level >= 0);

    if (n->level > 0) {		/* this is an internal node in the tree */
	for (size_t i = 0; i < NODECARD; i++)
	    if (n->branch[i].child && Overlap(r, n->branch[i].rect)) {
		LeafList_t *tlp = RTreeSearch(rtp, n->branch[i].child, r);
		if (llp) {
		    LeafList_t *xlp = llp;
		    while (xlp->next)
			xlp = xlp->next;
		    xlp->next = tlp;
		} else
		    llp = tlp;
	    }
    } else {			/* this is a leaf node */
	for (size_t i = 0; i < NODECARD; i++) {
	    if (n->branch[i].child && Overlap(r, n->branch[i].rect)) {
		llp = RTreeLeafListAdd(llp, (Leaf_t *) & n->branch[i]);
#				ifdef RTDEBUG
		PrintRect(n->branch[i].rect);
#				endif
	    }
	}
    }
    return llp;
}

/* Insert a data rectangle into an index structure.
** RTreeInsert provides for splitting the root;
** returns 1 if root was split, 0 if it was not.
** The level argument specifies the number of steps up from the leaf
** level to insert; e.g. a data rectangle goes in at level = 0.
** RTreeInsert2 does the recursion.
*/
static int RTreeInsert2(RTree_t *, Rect_t, void *, Node_t *, Node_t **, int);

int RTreeInsert(RTree_t *rtp, Rect_t r, void *data, Node_t **n) {
    Node_t *newnode=0;
    Branch_t b;
    int result = 0;


    assert(n);
    for (size_t i = 0; i < NUMDIMS; i++)
	assert(r.boundary[i] <= r.boundary[NUMDIMS + i]);

    if (RTreeInsert2(rtp, r, data, *n, &newnode, 0)) { // root was split

	Node_t *newroot = RTreeNewNode();	/* grow a new root, make tree taller */
	newroot->level = (*n)->level + 1;
	b.rect = NodeCover(*n);
	b.child = *n;
	AddBranch(rtp, &b, newroot, NULL);
	b.rect = NodeCover(newnode);
	b.child = newnode;
	AddBranch(rtp, &b, newroot, NULL);
	*n = newroot;
	result = 1;
    }

    return result;
}

/* Inserts a new data rectangle into the index structure.
** Recursively descends tree, propagates splits back up.
** Returns 0 if node was not split.  Old node updated.
** If node was split, returns 1 and sets the pointer pointed to by
** new to point to the new node.  Old node updated to become one of two.
** The level argument specifies the number of steps up from the leaf
** level to insert; e.g. a data rectangle goes in at level = 0.
*/
static int RTreeInsert2(RTree_t *rtp, Rect_t r, void *data, Node_t *n,
                        Node_t **new, int level) {
    Branch_t b;
    Node_t *n2=0;

    assert(n && new);
    assert(level >= 0 && level <= n->level);

    /* Still above level for insertion, go down tree recursively */
    if (n->level > level) {
	int i = PickBranch(r, n);
	if (!RTreeInsert2(rtp, r, data, n->branch[i].child, &n2, level)) {	/* recurse: child was not split */
	    n->branch[i].rect = CombineRect(r, n->branch[i].rect);
	    return 0;
	} else {		/* child was split */
	    n->branch[i].rect = NodeCover(n->branch[i].child);
	    b.child = n2;
	    b.rect = NodeCover(n2);
	    return AddBranch(rtp, &b, n, new);
	}
    } else if (n->level == level) {	/* at level for insertion. */
	/*Add rect, split if necessary */
	b.rect = r;
	b.child = data;
	return AddBranch(rtp, &b, n, new);
    } else {			/* Not supposed to happen */
	assert(false);
	return 0;
    }
}