File: split.q.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (332 lines) | stat: -rw-r--r-- 11,252 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <inttypes.h>
#include <label/index.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <label/split.q.h>
#include <stdbool.h>

/* Forward declarations */
static void MethodZero(RTree_t * rtp);
static void InitPVars(RTree_t * rtp);
static void LoadNodes(RTree_t *rtp, Node_t *n, Node_t *q);
static void Classify(RTree_t * rtp, int i, int group);
static void PickSeeds(RTree_t * rtp);
static void GetBranches(RTree_t * rtp, Node_t * n, Branch_t * b);

/*-----------------------------------------------------------------------------
| Split a node.
| Divides the nodes branches and the extra one between two nodes.
| Old node is one of the new ones, and one really new one is created.
| Tries more than one method for choosing a partition, uses best result.
-----------------------------------------------------------------------------*/
void SplitNode(RTree_t * rtp, Node_t * n, Branch_t * b, Node_t ** nn)
{
    assert(n);
    assert(b);

#ifdef RTDEBUG
    fprintf(stderr, "Splitting:\n");
    PrintNode(n);
    fprintf(stderr, "new branch:\n");
    PrintBranch(-1, b);
#endif

    /* load all the branches into a buffer, initialize old node */
    int level = n->level;
    GetBranches(rtp, n, b);

#ifdef RTDEBUG
    {
	/* Indicate that a split is about to take place */
	for (size_t i = 0; i < NODECARD + 1; i++) {
	    PrintRect(rtp->split.BranchBuf[i].rect);
	}
	PrintRect(rtp->split.CoverSplit);
    }
#endif

    /* find partition */
#ifdef RTDEBUG
    struct PartitionVars *p = &rtp->split.Partitions[0];
#endif
    MethodZero(rtp);

    /* put branches from buffer into 2 nodes according to chosen partition */
    *nn = RTreeNewNode();
    (*nn)->level = n->level = level;
    LoadNodes(rtp, n, *nn);
    assert(n->count + (*nn)->count == NODECARD + 1);

#ifdef RTDEBUG
    PrintPVars(p);
    fprintf(stderr, "group 0:\n");
    PrintNode(n);
    fprintf(stderr, "group 1:\n");
    PrintNode(*nn);
    fprintf(stderr, "\n");
#endif

}

/*-----------------------------------------------------------------------------
| Load branch buffer with branches from full node plus the extra branch.
-----------------------------------------------------------------------------*/
static void GetBranches(RTree_t * rtp, Node_t * n, Branch_t * b)
{
    assert(n);
    assert(b);

    /* load the branch buffer */
    for (size_t i = 0; i < NODECARD; i++) {
	assert(n->branch[i].child);	/* node should have every entry full */
	rtp->split.BranchBuf[i] = n->branch[i];
    }
    rtp->split.BranchBuf[NODECARD] = *b;

    /* calculate rect containing all in the set */
    rtp->split.CoverSplit = rtp->split.BranchBuf[0].rect;
    for (size_t i = 1; i < NODECARD + 1; i++) {
	rtp->split.CoverSplit = CombineRect(rtp->split.CoverSplit,
					    rtp->split.BranchBuf[i].rect);
    }
    rtp->split.CoverSplitArea = RectArea(rtp->split.CoverSplit);

    InitNode(n);
}

/*-----------------------------------------------------------------------------
| Method #0 for choosing a partition:
| As the seeds for the two groups, pick the two rects that would waste the
| most area if covered by a single rectangle, i.e. evidently the worst pair
| to have in the same group.
| Of the remaining, one at a time is chosen to be put in one of the two groups.
| The one chosen is the one with the greatest difference in area expansion
| depending on which group - the rect most strongly attracted to one group
| and repelled from the other.
| If one group gets too full (more would force other group to violate min
| fill requirement) then other group gets the rest.
| These last are the ones that can go in either group most easily.
-----------------------------------------------------------------------------*/
static void MethodZero(RTree_t * rtp)
{
    int group, chosen = 0, betterGroup = 0;

    InitPVars(rtp);
    PickSeeds(rtp);

    while (rtp->split.Partitions[0].count[0] +
	   rtp->split.Partitions[0].count[1] < NODECARD + 1 &&
	   rtp->split.Partitions[0].count[0] < NODECARD + 1
	   && rtp->split.Partitions[0].count[1] < NODECARD + 1) {
	bool biggestDiffSet = false;
	uint64_t biggestDiff = 0;
	for (int i = 0; i < NODECARD + 1; i++) {
	    if (!rtp->split.Partitions[0].taken[i]) {
		const Rect_t r = rtp->split.BranchBuf[i].rect;
		Rect_t rect = CombineRect(r, rtp->split.Partitions[0].cover[0]);
		uint64_t growth0 = RectArea(rect) - rtp->split.Partitions[0].area[0];
		rect = CombineRect(r, rtp->split.Partitions[0].cover[1]);
		uint64_t growth1 = RectArea(rect) - rtp->split.Partitions[0].area[1];
		uint64_t diff;
		if (growth1 >= growth0) {
		    diff = growth1 - growth0;
		    group = 0;
		} else {
		    diff = growth0 - growth1;
		    group = 1;
		}

		if (!biggestDiffSet || diff > biggestDiff) {
		    biggestDiff = diff;
		    biggestDiffSet = true;
		    chosen = i;
		    betterGroup = group;
		} else if (diff == biggestDiff &&
			   rtp->split.Partitions[0].count[group] <
			   rtp->split.Partitions[0].count[betterGroup]) {
		    chosen = i;
		    betterGroup = group;
		}
	    }
	}
	Classify(rtp, chosen, betterGroup);
    }

    /* if one group too full, put remaining rects in the other */
    if (rtp->split.Partitions[0].count[0] +
	rtp->split.Partitions[0].count[1] < NODECARD + 1) {
	group = 0;
	if (rtp->split.Partitions[0].count[0] >= NODECARD + 1)
	    group = 1;
	for (int i = 0; i < NODECARD + 1; i++) {
	    if (!rtp->split.Partitions[0].taken[i])
		Classify(rtp, i, group);
	}
    }

    assert(rtp->split.Partitions[0].count[0] +
	   rtp->split.Partitions[0].count[1] == NODECARD + 1);
    assert(rtp->split.Partitions[0].count[0] >= 0
	   && rtp->split.Partitions[0].count[1] >= 0);
}

/*-----------------------------------------------------------------------------
| Pick two rects from set to be the first elements of the two groups.
| Pick the two that waste the most area if covered by a single rectangle.
-----------------------------------------------------------------------------*/
static void PickSeeds(RTree_t * rtp)
{
  int seed0 = 0, seed1 = 0;
  uint64_t area[NODECARD + 1];

    for (int i = 0; i < NODECARD + 1; i++)
	area[i] = RectArea(rtp->split.BranchBuf[i].rect);

    uint64_t worst=0;
    for (int i = 0; i < NODECARD; i++) {
	for (int j = i + 1; j < NODECARD + 1; j++) {
	    Rect_t rect = CombineRect(rtp->split.BranchBuf[i].rect,
	                              rtp->split.BranchBuf[j].rect);
	    uint64_t waste = RectArea(rect) - area[i] - area[j];
	    if (waste > worst) {
		worst = waste;
		seed0 = i;
		seed1 = j;
	    }
	}
    }
    Classify(rtp, seed0, 0);
    Classify(rtp, seed1, 1);
}

/*-----------------------------------------------------------------------------
| Put a branch in one of the groups.
-----------------------------------------------------------------------------*/
static void Classify(RTree_t * rtp, int i, int group)
{

    assert(!rtp->split.Partitions[0].taken[i]);

    rtp->split.Partitions[0].partition[i] = group;
    rtp->split.Partitions[0].taken[i] = true;

    if (rtp->split.Partitions[0].count[group] == 0)
	rtp->split.Partitions[0].cover[group] =
	    rtp->split.BranchBuf[i].rect;
    else
	rtp->split.Partitions[0].cover[group] =
	    CombineRect(rtp->split.BranchBuf[i].rect,
			rtp->split.Partitions[0].cover[group]);
    rtp->split.Partitions[0].area[group] =
	RectArea(rtp->split.Partitions[0].cover[group]);
    rtp->split.Partitions[0].count[group]++;

#	ifdef RTDEBUG
    {
	/* redraw entire group and its cover */
	int j;
	MFBSetColor(WHITE);	/* cover is white */
	PrintRect(rtp->split.Partitions[0].cover[group]);
	MFBSetColor(group + 3);	/* group 0 green, group 1 blue */
	for (j = 0; j < NODECARD + 1; j++) {
	    if (rtp->split.Partitions[0].taken[j] &&
		rtp->split.Partitions[0].partition[j] == group)
		PrintRect(rtrtp->split.Partitions[0].BranchBuf[j].rect);
	}
	GraphChar();
    }
#	endif
}

/*-----------------------------------------------------------------------------
| Copy branches from the buffer into two nodes according to the partition.
-----------------------------------------------------------------------------*/
static void LoadNodes(RTree_t *rtp, Node_t *n, Node_t *q) {
    assert(n);
    assert(q);

    for (size_t i = 0; i < NODECARD + 1; i++) {
	assert(rtp->split.Partitions[0].partition[i] == 0 ||
	       rtp->split.Partitions[0].partition[i] == 1);
	if (rtp->split.Partitions[0].partition[i] == 0)
	    AddBranch(rtp, &rtp->split.BranchBuf[i], n, NULL);
	else if (rtp->split.Partitions[0].partition[i] == 1)
	    AddBranch(rtp, &rtp->split.BranchBuf[i], q, NULL);
    }
}

/*-----------------------------------------------------------------------------
| Initialize a PartitionVars structure.
-----------------------------------------------------------------------------*/
static void InitPVars(RTree_t * rtp)
{
    rtp->split.Partitions[0].count[0] = rtp->split.Partitions[0].count[1] =
	0;
    rtp->split.Partitions[0].cover[0] = rtp->split.Partitions[0].cover[1] =
	NullRect();
    rtp->split.Partitions[0].area[0] = rtp->split.Partitions[0].area[1] =
	0;
    for (size_t i = 0; i < NODECARD + 1; i++) {
	rtp->split.Partitions[0].taken[i] = false;
	rtp->split.Partitions[0].partition[i] = -1;
    }
}

#ifdef RTDEBUG

/*-----------------------------------------------------------------------------
| Print out data for a partition from PartitionVars struct.
-----------------------------------------------------------------------------*/
PrintPVars(RTree_t * rtp)
{
    fprintf(stderr, "\npartition:\n");
    for (size_t i = 0; i < NODECARD + 1; i++) {
	fprintf(stderr, "%3zu\t", i);
    }
    fprintf(stderr, "\n");
    for (size_t i = 0; i < NODECARD + 1; i++) {
	if (rtp->split.Partitions[0].taken[i])
	    fprintf(stderr, "  t\t");
	else
	    fprintf(stderr, "\t");
    }
    fprintf(stderr, "\n");
    for (size_t i = 0; i < NODECARD + 1; i++) {
	fprintf(stderr, "%3d\t", rtp->split.Partitions[0].partition[i]);
    }
    fprintf(stderr, "\n");

    fprintf(stderr, "count[0] = %d  area = %" PRIu64 "\n",
	    rtp->split.Partitions[0].count[0],
	    rtp->split.Partitions[0].area[0]);
    fprintf(stderr, "count[1] = %d  area = %" PRIu64 "\n",
	    rtp->split.Partitions[0].count[1],
	    rtp->split.Partitions[0].area[1]);
    if (rtp->split.Partitions[0].area[0] +
	rtp->split.Partitions[0].area[1] > 0) {
	fprintf(stderr, "total area = %" PRIu64 "  effectiveness = %3.2f\n",
		rtp->split.Partitions[0].area[0] +
		rtp->split.Partitions[0].area[1],
		(float) rtp->split.CoverSplitArea /
		(rtp->split.Partitions[0].area[0] +
		 rtp->split.Partitions[0].area[1]));
    }
    fprintf(stderr, "cover[0]:\n");
    PrintRect(rtp->split.Partitions[0].cover[0]);

    fprintf(stderr, "cover[1]:\n");
    PrintRect(rtp->split.Partitions[0].cover[1]);
}
#endif