File: agglomerative_bundling.cpp

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (516 lines) | stat: -rw-r--r-- 17,172 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <algorithm>
#include <common/types.h>
#include <common/globals.h>
#include <sparse/general.h>
#include <math.h>
#include <time.h>
#include <sparse/SparseMatrix.h>
#include <mingle/edge_bundling.h>
#include <mingle/ink.h>
#include <mingle/agglomerative_bundling.h>
#include <mingle/nearest_neighbor_graph.h>
#include <string.h>
#include <vector>

enum {MINGLE_DEBUG=0};

namespace {
struct Agglomerative_Ink_Bundling {
  Agglomerative_Ink_Bundling(int level_, int n_, SparseMatrix A_,
                             const std::vector<pedge> &edges_)
      : level(level_), n(n_), A(A_), edges(edges_) {}

  int level; /* 0, 1, ... */
  int n;
  SparseMatrix A;  /* n x n matrix, where n is the number of edges/bundles in
                      this level */
  SparseMatrix R0 = nullptr; /* this is basically R[level - 1].R[level - 2]...R[0], which
                      gives the map of bundling i to the original edges: first
                      row of R0 gives the nodes on the finest grid corresponding
                      to the coarsest node 1, etc */
  SparseMatrix R = nullptr; ///< striction mtrix from level to level + 1
  std::vector<double>
      inks; /* amount of ink needed to draw this edge/bundle. Dimension n. */
  double total_ink = -1; /* amount of ink needed to draw this edge/bundle. Dimension
                       n. */
  std::vector<pedge>
      edges; /* the original edge info. This does not vary level to level and
                 is of dimenion n0, where n0 is the number of original edges */
  bool delete_top_level_A = false; /*whether the top level matrix should be deleted on
                              garbage collecting the grid */
};
} // namespace

using aib_t = std::vector<Agglomerative_Ink_Bundling>;

static aib_t Agglomerative_Ink_Bundling_init(SparseMatrix A,
                                             const std::vector<pedge> &edges,
                                             int level) {
  int n = A->n, i;

  assert(SparseMatrix_is_symmetric(A, true));

  if (!A) return {};
  assert(A->m == n);
  Agglomerative_Ink_Bundling grid(level, n, A, edges);
  if (level == 0){
    double total_ink = 0;
    for (i = 0; i < n; i++) {
      grid.inks.push_back(ink1(edges[i]));
      total_ink += grid.inks[i];
    }
    grid.total_ink = total_ink;
  }
  return aib_t{grid};
}

static void Agglomerative_Ink_Bundling_delete(aib_t &grid) {
  for (Agglomerative_Ink_Bundling &a : grid) {
    if (a.A) {
      if (a.level == 0) {
        if (a.delete_top_level_A) SparseMatrix_delete(a.A);
      } else {
        SparseMatrix_delete(a.A);
      }
    }
    /* on level 0, R0 = NULL, on level 1, R0 = R */
    if (a.level > 1) SparseMatrix_delete(a.R0);
    SparseMatrix_delete(a.R);
  }
}

static void Agglomerative_Ink_Bundling_establish(aib_t &grid, int *pick,
                                                 double angle_param,
                                                 double angle) {
  /* pick is a work array of dimension n, with n the total number of original edges */
  SparseMatrix A = grid.front().A;
  int n = grid.front().n, level = grid.front().level, nc = 0;
  int *ia = A->ia, *ja = A->ja;
  int i, j, k, jj, jc, jmax, ni, nj, npicks;
  const std::vector<pedge> &edges = grid.front().edges;
  const std::vector<double> &inks = grid.front().inks;
  double inki, inkj;
  double gain, maxgain, minink, total_gain = 0;
  int *ip = NULL, *jp = NULL, ie;
  std::vector<std::vector<int>> cedges;/* a table listing the content of bundled edges in the coarsen grid.
		    cedges[i] contain the list of origonal edges that make up the bundle i in the next level */
  double ink0, ink1, grand_total_ink = 0, grand_total_gain = 0;
  point_t meet1, meet2;

  if (Verbose > 1)
    fprintf(stderr, "level ===================== %d, n = %d\n",
            grid.front().level, n);
  cedges.resize(n);
  std::vector<double> cinks(n, 0.0);

  if (grid.front().level > 0) {
    ip = grid.front().R0->ia;
    jp = grid.front().R0->ja;
  }

  assert(n == A->n);
  std::vector<int> matching(n, UNMATCHED);

  for (i = 0; i < n; i++){
    if (matching[i] != UNMATCHED) continue;

    /* find the best matching in ink saving */
    maxgain = 0;
    minink = -1;
    jmax = -1;
    for (j = ia[i]; j < ia[i+1]; j++){
      jj = ja[j];
      if (jj == i) continue;

      /* ink saving of merging i and j */
      if ((jc=matching[jj]) == UNMATCHED){
	/* neither i nor jj are matched */
	inki = inks[i]; inkj = inks[jj];
	if (ip && jp){/* not the first level */
	  ni = ip[i + 1] - ip[i]; // number of edges represented by i
	  nj = ip[jj + 1] - ip[jj]; // number of edges represented by jj
	  memcpy(pick, &jp[ip[i]], sizeof(int) * ni);
	  memcpy(pick + ni, &jp[ip[jj]], sizeof(int) * nj);
	} else {/* first level */
	  pick[0] = i; pick[1] = jj;
	  ni = nj = 1;
	}
	if (MINGLE_DEBUG) if (Verbose) fprintf(stderr, "ink(%d)=%f, ink(%d)=%f", i, inki, jj, inkj);
      } else {
	/* j is already matched. Its content is on cedges[jc] */
	inki = inks[i]; inkj = cinks[jc];
	if (MINGLE_DEBUG) if (Verbose) fprintf(stderr, "ink(%d)=%f, ink(%d->%d)=%f", i, inki, jj, jc, inkj);
	if (ip) {
	  ni = ip[i + 1] - ip[i]; // number of edges represented by i
	  memcpy(pick, &jp[ip[i]], sizeof(int) * ni);
	} else {
	  ni = 1; pick[0] = i;
	}
	nj = cedges[jc].size();
	npicks = ni;
	for (k = 0; k < nj; k++) {
	  pick[npicks++] = cedges[jc][k];
	}
      }

      npicks = ni + nj;
      ink1 =
          ink(edges, npicks, pick, &ink0, &meet1, &meet2, angle_param, angle);
      if (MINGLE_DEBUG) {
	if (Verbose) {
		fprintf(stderr,", if merging {");
		for (k = 0; k < npicks; k++) fprintf(stderr,"%d,", pick[k]);
		fprintf(stderr,"}, ");
		fprintf(stderr, " ink0=%f, ink1=%f", inki+inkj, ink1);
	}
      }

      gain = inki + inkj - ink1;
      if (MINGLE_DEBUG) if (Verbose) fprintf(stderr, " gain=%f", gain);
      if (gain > maxgain){
	maxgain = gain;
	minink = ink1;
	jmax = jj;
	if (MINGLE_DEBUG) if (Verbose) fprintf(stderr, "maxgain=%f", maxgain);
      }
      if (MINGLE_DEBUG) if (Verbose) fprintf(stderr, "\n");



    }


    /* now merge i and jmax */
    if (maxgain > 0){
      /* a good bundling of i and another edge jmax is found */
      total_gain += maxgain;
      jc = matching[jmax];
      if (jc == UNMATCHED){/* i and j both unmatched. Add j in the table first */
	if (MINGLE_DEBUG) if (Verbose) printf("maxgain=%f, merge %d with best edge: %d to form coarsen edge %d. Ink=%f\n",maxgain, i, jmax, nc, minink);
	matching[i] = matching[jmax] = nc;
	if (ip){
	  for (k = ip[jmax]; k < ip[jmax+1]; k++) {
	    ie = jp[k];
	    cedges[nc].push_back(ie);
	  }
	} else {
	  cedges[nc].push_back(jmax);
	}
	jc = nc;
	nc++;
      } else {/*j is already matched */
	if (MINGLE_DEBUG) if (Verbose) printf("maxgain=%f, merge %d with existing cluster %d\n",maxgain, i, jc);
	matching[i] = jc;
	grand_total_ink -= cinks[jc];/* ink of cluster jc was already added, and will be added again as part of a larger cluster with i, so dicount */
      }
    } else {/*i can not match/bundle successfully */
      if (MINGLE_DEBUG) if (Verbose) fprintf(stderr, "no gain in bundling node %d\n",i);
      assert(maxgain <= 0);
      matching[i] = nc;
      jc = nc;
      minink = inks[i];
      nc++;
    }


    /* add i to the appropriate table */
    if (ip){
      for (k = ip[i]; k < ip[i+1]; k++) {
	ie = jp[k];
	cedges[jc].push_back(ie);
      }
    } else {
	cedges[jc].push_back(i);
    }
    cinks[jc] = minink;
    grand_total_ink += minink;
    grand_total_gain += maxgain;

    if (MINGLE_DEBUG){
      if (Verbose) {
        fprintf(stderr," coarse edge[%d]={",jc);
        for (const int &cedge : cedges[jc]) {
          fprintf(stderr,"%d,", cedge);
        }
        fprintf(stderr,"}, grand_total_gain=%f\n",grand_total_gain);
      }
    }

  }

  if (nc >= 1 && total_gain > 0){
    /* now set up restriction and prolongation operator */
    SparseMatrix P, R, R1, R0, B, cA;
    double one = 1.;

    R1 = SparseMatrix_new(nc, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD);
    for (i = 0; i < n; i++){
      jj = matching[i];
      SparseMatrix_coordinate_form_add_entry(R1, jj, i, &one);
    }
    R = SparseMatrix_from_coordinate_format(R1);
    SparseMatrix_delete(R1);
    P = SparseMatrix_transpose(R);
    B = SparseMatrix_multiply(R, A);
    if (!B) return;
    cA = SparseMatrix_multiply(B, P);
    if (!cA) return;
    SparseMatrix_delete(B);
    SparseMatrix_delete(P);
    grid.front().R = R;

    level++;
    aib_t cgrid = Agglomerative_Ink_Bundling_init(cA, edges, level);

    if (grid.front().R0) {
      R0 = SparseMatrix_multiply(R, grid.front().R0);
    } else {
      assert(grid.front().level == 0);
      R0 = R;
    }
    cgrid.front().R0 = R0;
    cgrid.front().inks = cinks;
    cgrid.front().total_ink = grand_total_ink;

    if (Verbose > 1)
      fprintf(stderr,
              "level %d->%d, edges %d -> %d, ink %f->%f , gain = %f, or %f\n",
              grid.front().level,
              cgrid.front().level,
              grid.front().n,
              cgrid.front().n,
              grid.front().total_ink,
              grand_total_ink,
              grid.front().total_ink - grand_total_ink,
              grand_total_gain);	
    assert(fabs(grid.front().total_ink - cgrid.front().total_ink - grand_total_gain)
           <= 0.0001 * grid.front().total_ink);

    Agglomerative_Ink_Bundling_establish(cgrid, pick, angle_param, angle);
    grid.insert(grid.end(), cgrid.begin(), cgrid.end());

  } else {
    if (Verbose > 1) fprintf(stderr,"no more improvement, orig ink = %f, gain = %f, stop and final bundling found\n", grand_total_ink, grand_total_gain);
    /* no more improvement, stop and final bundling found */
  }
}

static aib_t Agglomerative_Ink_Bundling_new(SparseMatrix A0,
                                            const std::vector<pedge> &edges,
                                            double angle_param, double angle) {
  /* give a link of edges and their nearest neighbor graph, return a multilevel
   * of edge bundling based on ink saving */
  SparseMatrix A = A0;

  if (!SparseMatrix_is_symmetric(A, false) || A->type != MATRIX_TYPE_REAL){
    A = SparseMatrix_get_real_adjacency_matrix_symmetrized(A);
  }
  aib_t grid = Agglomerative_Ink_Bundling_init(A, edges, 0);

  std::vector<int> pick(A0->m);

  Agglomerative_Ink_Bundling_establish(grid, pick.data(), angle_param, angle);

  if (A != A0) grid.front().delete_top_level_A = true; // be sure to clean up later

  return grid;
}

static void agglomerative_ink_bundling_internal(
    int dim, SparseMatrix A, std::vector<pedge> &edges, int nneighbors,
    int *recurse_level, int MAX_RECURSE_LEVEL, double angle_param, double angle,
    double *current_ink, double *ink00) {

  int i, j, jj, k;
  int *ia, *ja;
  int *pick;
  SparseMatrix R;
  double ink0, ink1;
  point_t meet1, meet2;
  double wgt_all;
  [[maybe_unused]] const double TOL = 0.0001;
  clock_t start;

  (*recurse_level)++;
  if (Verbose > 1) fprintf(stderr, "agglomerative_ink_bundling_internal, recurse level ------- %d\n",*recurse_level);

  assert(A->m == A->n);

  start = clock();
  aib_t grid = Agglomerative_Ink_Bundling_new(A, edges, angle_param, angle);
  if (Verbose > 1)
    fprintf(stderr, "CPU for agglomerative bundling %f\n", (double)(clock() - start) / CLOCKS_PER_SEC);
  ink0 = grid.front().total_ink;

  /* find coarsest */
  ink1 = grid.back().total_ink;

  if (*current_ink < 0){
    *current_ink = *ink00 = ink0;
    if (Verbose > 1)
      fprintf(stderr,"initial total ink = %f\n",*current_ink);
  }
  if (ink1 < ink0){
    *current_ink -= ink0 - ink1;
  }

  if (Verbose > 1)
    fprintf(stderr,
            "ink: %f->%f, edges: %d->%d, current ink = %f, percentage gain over original = %f\n",
            ink0,
            ink1,
            grid.front().n,
            grid.back().n,
            *current_ink,
            (ink0 - ink1) / *ink00);

  /* if no meaningful improvement (0.0001%), out, else rebundle the middle section */
  if ((ink0 - ink1) / *ink00 < 0.000001 || *recurse_level > MAX_RECURSE_LEVEL) {
    /* project bundles up */
    R = grid.back().R0;
    if (R){
      ia = R->ia;
      ja = R->ja;
      for (i = 0; i < R->m; i++){
	pick = &ja[ia[i]];
	
	if (MINGLE_DEBUG) if (Verbose) fprintf(stderr,"calling ink2...\n");
	ink1 = ink(edges, ia[i+1]-ia[i], pick, &ink0, &meet1, &meet2, angle_param, angle);
	if (MINGLE_DEBUG) if (Verbose) fprintf(stderr,"finish calling ink2...\n");
	assert(fabs(ink1 - grid.back().inks[i]) <= std::max(TOL, TOL * ink1) && ink1 - ink0 <= TOL);
	assert(ink1 < 1000 * ink0); /* assert that points were found */
	wgt_all = 0.;
	if (ia[i+1]-ia[i] > 1){
	  for (j = ia[i]; j < ia[i+1]; j++){
	    /* make this edge 4 points, insert two meeting points at 1 and 2, make 3 the last point */
	    jj = ja[j];
	    pedge_double(edges[jj]);/* has to call pedge_double twice: from 2 points to 3 points to 5 points. The last point not used, may be
						 improved later */
	    pedge_double(edges[jj]);
	    pedge &e = edges[jj];

	    e.x[1 * dim] = meet1.x;
	    e.x[1 * dim + 1] = meet1.y;
	    e.x[2 * dim] = meet2.x;
	    e.x[2 * dim + 1] = meet2.y;
	    e.x[3 * dim] = e.x[4 * dim];
	    e.x[3 * dim + 1] = e.x[4 * dim + 1];
	    e.npoints = 4;
	    e.wgts = std::vector<double>(4, e.wgt);
	    wgt_all += e.wgt;
	
	  }
	  for (j = ia[i]; j < ia[i+1]; j++){
	    pedge &e = edges[ja[j]];
	    e.wgts[1] = wgt_all;
	  }
	}
	
      }
    }
  } else {
    int ne, npp, l;
    SparseMatrix A_mid;
    double wgt;

   /* make new edges using meet1 and meet2.

       call Agglomerative_Ink_Bundling_new

       inherit new edges to old edges
    */

    R = grid.back().R0;
    assert(R && grid.size() > 1);/* if ink improved, we should have gone at leat 1 level down! */
    ia = R->ia;
    ja = R->ja;
    ne = R->m;
    std::vector<pedge> mid_edges(ne);
    std::vector<double> xx(4 * ne);
    for (i = 0; i < R->m; i++){
      pick = &ja[ia[i]];
      wgt = 0.;
      for (j = ia[i]; j < ia[i+1]; j++) wgt += edges[j].wgt;
      if (MINGLE_DEBUG) if (Verbose) fprintf(stderr,"calling ink3...\n");
      ink1 = ink(edges, ia[i+1]-ia[i], pick, &ink0, &meet1, &meet2, angle_param, angle);
      if (MINGLE_DEBUG) if (Verbose) fprintf(stderr,"done calling ink3...\n");
      assert(fabs(ink1 - grid.back().inks[i]) <= std::max(TOL, TOL * ink1) && ink1 - ink0 <= TOL);
      assert(ink1 < 1000 * ink0); /* assert that points were found */
      xx[i*4 + 0] = meet1.x;
      xx[i*4 + 1] = meet1.y;
      xx[i*4 + 2] = meet2.x;
      xx[i*4 + 3] = meet2.y;
      mid_edges[i] = pedge_wgt_new(2, dim, &xx.data()[i*4], wgt);
    }

    A_mid = nearest_neighbor_graph(ne, std::min(nneighbors, ne), xx);

    agglomerative_ink_bundling_internal(dim, A_mid, mid_edges, nneighbors, recurse_level, MAX_RECURSE_LEVEL, angle_param, angle, current_ink, ink00);
    SparseMatrix_delete(A_mid);

    /* patching edges with the new mid-section */
    for (i = 0; i < R->m; i++){
      // middle section of edges that will be bundled again
      const pedge &midedge = mid_edges[i];
      npp = midedge.npoints + 2;
      for (j = ia[i]; j < ia[i+1]; j++){
	jj = ja[j];
	pedge_wgts_realloc(edges[jj], npp);
	pedge &e = edges[jj];

	assert(e.npoints == 2);
	for (l = 0; l < dim; l++){/* move the second point to the last */
	  e.x[(npp - 1) * dim + l] = e.x[1 * dim + l];
	}

	for (k = 0; k < midedge.npoints; k++){
	  for (l = 0; l < dim; l++){
	    e.x[(k + 1) * dim + l] = midedge.x[k * dim + l];
	  }
	  if (k < midedge.npoints - 1){
	    if (!midedge.wgts.empty()) {
	      e.wgts[k + 1] = midedge.wgts[k];
	    } else {
	      e.wgts[k + 1] = midedge.wgt;
	    }
	  }
	}
	e.wgts[npp - 2] = e.wgts[0]; // the last interval take from the 1st interval


	e.npoints = npp;
      }
    }

    for (i = 0; i < ne; i++) pedge_delete(mid_edges[i]);

  }

  Agglomerative_Ink_Bundling_delete(grid);
}

void agglomerative_ink_bundling(int dim, SparseMatrix A,
                                std::vector<pedge> &edges, int nneighbor,
                                int MAX_RECURSE_LEVEL, double angle_param,
                                double angle) {
  int recurse_level = 0;
  double current_ink = -1, ink0;

  ink_count = 0;
  agglomerative_ink_bundling_internal(dim, A, edges, nneighbor, &recurse_level,
                                      MAX_RECURSE_LEVEL, angle_param, angle,
                                      &current_ink, &ink0);

  if (Verbose > 1)
    fprintf(stderr,"initial total ink = %f, final total ink = %f, inksaving = %f percent, total ink_calc = %f, avg ink_calc per edge = %f\n", ink0, current_ink, (ink0-current_ink)/ink0, ink_count,  ink_count/(double) A->m);
}