1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <common/types.h>
#include <common/globals.h>
#include <sparse/general.h>
#include <mingle/ink.h>
#include <vector>
double ink_count;
static point_t addPoint (point_t a, point_t b)
{
a.x += b.x;
a.y += b.y;
return a;
}
static point_t subPoint (point_t a, point_t b)
{
a.x -= b.x;
a.y -= b.y;
return a;
}
static point_t scalePoint (point_t a, double d)
{
a.x *= d;
a.y *= d;
return a;
}
static double dotPoint(point_t a, point_t b){
return a.x*b.x + a.y*b.y;
}
static const point_t Origin = {0, 0};
/* sumLengths:
*/
static double sumLengths_avoid_bad_angle(const std::vector<point_t> &points,
point_t end, point_t meeting,
double angle_param) {
/* avoid sharp turns, we want cos_theta to be as close to -1 as possible */
double len0, len, sum = 0;
double diff_x, diff_y, diff_x0, diff_y0;
double cos_theta, cos_max = -10;
diff_x0 = end.x-meeting.x;
diff_y0 = end.y-meeting.y;
len0 = sum = hypot(diff_x0, diff_y0);
// distance form each of 'points' till 'meeting'
for (const point_t &p : points) {
diff_x = p.x - meeting.x;
diff_y = p.y - meeting.y;
len = hypot(diff_x, diff_y);
sum += len;
cos_theta = (diff_x0 * diff_x + diff_y0 * diff_y)
/ std::max(len * len0, 0.00001);
cos_max = std::max(cos_max, cos_theta);
}
// distance of single line from 'meeting' to 'end'
return sum*(cos_max + angle_param);/* straight line gives angle_param - 1, turning angle of 180 degree gives angle_param + 1 */
}
static double sumLengths(const std::vector<point_t> &points, point_t end,
point_t meeting) {
double sum = 0;
double diff_x, diff_y;
// distance form each of 'points' till 'meeting'
for (const point_t &p : points) {
diff_x = p.x - meeting.x;
diff_y = p.y - meeting.y;
sum += hypot(diff_x, diff_y);
}
// distance of single line from 'meeting' to 'end'
diff_x = end.x-meeting.x;
diff_y = end.y-meeting.y;
sum += hypot(diff_x, diff_y);
return sum;
}
/* bestInk:
*/
static double bestInk(const std::vector<point_t> &points, point_t begin,
point_t end, double prec, point_t *meet,
double angle_param) {
point_t first, second, third, fourth, diff, meeting;
double value1, value2, value3, value4;
first = begin;
fourth = end;
do {
diff = subPoint(fourth,first);
second = addPoint(first,scalePoint(diff,1.0/3.0));
third = addPoint(first,scalePoint(diff,2.0/3.0));
if (angle_param < 1){
value1 = sumLengths(points, end, first);
value2 = sumLengths(points, end, second);
value3 = sumLengths(points, end, third);
value4 = sumLengths(points, end, fourth);
} else {
value1 = sumLengths_avoid_bad_angle(points, end, first, angle_param);
value2 = sumLengths_avoid_bad_angle(points, end, second, angle_param);
value3 = sumLengths_avoid_bad_angle(points, end, third, angle_param);
value4 = sumLengths_avoid_bad_angle(points, end, fourth, angle_param);
}
if (value1<value2) {
if (value1<value3) {
if (value1<value4) {
// first is smallest
fourth = second;
}
else {
// fourth is smallest
first = third;
}
}
else {
if (value3<value4) {
// third is smallest
first = second;
}
else {
// fourth is smallest
first = third;
}
}
}
else {
if (value2<value3) {
if (value2<value4) {
// second is smallest
fourth = third;
}
else {
// fourth is smallest
first = third;
}
}
else {
if (value3<value4) {
// third is smallest
first = second;
}
else {
// fourth is smallest
first = third;
}
}
}
} while (fabs(value1 - value4) / (std::min(value1, value4) + 1e-10) > prec
&& dotPoint(diff, diff) > 1.e-20);
meeting = scalePoint(addPoint(first,fourth),0.5);
*meet = meeting;
return sumLengths(points, end, meeting);
}
static double project_to_line(point_t pt, point_t left, point_t right, double angle){
/* pt
^ ^
. \ \
. \ \
d . a\ \
. \ \
. \ \
. c \ alpha \ b
.<------left:0 ----------------------------> right:1. Find the projection of pt on the left--right line. If the turning angle is small,
| |
|<-------f---------
we should get a negative number. Let a := left->pt, b := left->right, then we are calculating:
c = |a| cos(a,b)/|b| b
d = a - c
f = -ctan(alpha)*|d|/|b| b
and the project of alpha degree on the left->right line is
c-f = |a| cos(a,b)/|b| b - -ctan(alpha)*|d|/|b| b
= (|a| a.b/(|a||b|) + ctan(alpha)|a-c|)/|b| b
= (a.b/|b| + ctan(alpha)|a-c|)/|b| b
the dimentionless projection is:
a.b/|b|^2 + ctan(alpha)|a-c|/|b|
= a.b/|b|^2 + ctan(alpha)|d|/|b|
*/
point_t b, a;
double bnorm, dnorm;
double alpha, ccord;
if (angle <=0 || angle >= M_PI) return 2;/* return outside of the interval which should be handled as a sign of infeasible turning angle */
alpha = angle;
assert(alpha > 0 && alpha < M_PI);
b = subPoint(right, left);
a = subPoint(pt, left);
bnorm = std::max(1.e-10, dotPoint(b, b));
ccord = dotPoint(b, a)/bnorm;
dnorm = dotPoint(a,a)/bnorm - ccord*ccord;
if (alpha == M_PI/2){
return ccord;
}
return ccord + sqrt(std::max(0.0, dnorm)) / tan(alpha);
}
/* ink:
* Compute minimal ink used the input edges are bundled.
* Assumes tails all occur on one side and heads on the other.
*/
double ink(const std::vector<pedge> &edges, int numEdges, int *pick,
double *ink0, point_t *meet1, point_t *meet2, double angle_param,
double angle) {
int i;
point_t begin, end, mid, diff;
double inkUsed;
double eps = 1.0e-2;
double cend = 0, cbegin = 0;
double wgt = 0;
ink_count += numEdges;
*ink0 = 0;
/* canonicalize so that edges 1,2,3 and 3,2,1 gives the same optimal ink */
if (pick) vector_sort_int(numEdges, pick);
begin = end = Origin;
for (i = 0; i < numEdges; i++) {
const pedge &e = pick ? edges[pick[i]] : edges[i];
const std::vector<double> &x = e.x;
point_t source = {x[0], x[1]};
point_t target = {x[e.dim * e.npoints - e.dim],
x[e.dim * e.npoints - e.dim + 1]};
(*ink0) += hypot(source.x - target.x, source.y - target.y);
begin = addPoint(begin, scalePoint(source, e.wgt));
end = addPoint(end, scalePoint(target, e.wgt));
wgt += e.wgt;
}
begin = scalePoint (begin, 1.0/wgt);
end = scalePoint (end, 1.0/wgt);
if (numEdges == 1){
*meet1 = begin;
*meet2 = end;
return *ink0;
}
/* shift the begin and end point to avoid sharp turns */
std::vector<point_t> sources;
std::vector<point_t> targets;
for (i = 0; i < numEdges; i++) {
const pedge &e = pick ? edges[pick[i]] : edges[i];
const std::vector<double> &x = e.x;
sources.push_back(point_t{x[0], x[1]});
targets.push_back(point_t{x[e.dim * e.npoints - e.dim],
x[e.dim * e.npoints - e.dim + 1]});
/* begin(1) ----------- mid(0) */
if (i == 0){
cbegin = project_to_line(sources[i], begin, end, angle);
cend = project_to_line(targets[i], end, begin, angle);
} else {
cbegin = std::max(cbegin, project_to_line(sources[i], begin, end, angle));
cend = std::max(cend, project_to_line(targets[i], end, begin, angle));
}
}
if (angle > 0 && angle < M_PI){
if (cbegin + cend > 1 || cbegin > 1 || cend > 1){
/* no point can be found that satisfies the angular constraints, so we give up and set ink to a large value */
inkUsed = 1000*(*ink0);
return inkUsed;
}
/* make sure the turning angle is no more than alpha degree */
cbegin = std::max(0.0, cbegin);/* make sure the new adjusted point is with in [begin,end] internal */
diff = subPoint(end, begin);
begin = addPoint(begin, scalePoint(diff, cbegin));
cend = std::max(0.0, cend);/* make sure the new adjusted point is with in [end,begin] internal */
end = subPoint(end, scalePoint(diff, cend));
}
mid = scalePoint (addPoint(begin,end),0.5);
inkUsed = bestInk(sources, begin, mid, eps, meet1, angle_param)
+ bestInk(targets, end, mid, eps, meet2, angle_param);
return inkUsed;
}
double ink1(const pedge &e) {
double ink0 = 0;
const std::vector<double> &x = e.x;
const double xx = x[0] - x[e.dim * e.npoints - e.dim];
const double yy = x[1] - x[e.dim * e.npoints - e.dim + 1];
ink0 += hypot(xx, yy);
return ink0;
}
|