File: adjust.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (1088 lines) | stat: -rw-r--r-- 26,800 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

/* adjust.c
 * Routines for repositioning nodes after initial layout in
 * order to reduce/remove node overlaps.
 */

#include <assert.h>
#include <neatogen/neato.h>
#include <common/utils.h>
#include <float.h>
#include <math.h>
#include <neatogen/voronoi.h>
#include <neatogen/info.h>
#include <neatogen/edges.h>
#include <neatogen/site.h>
#include <neatogen/digcola.h>
#if defined(HAVE_GTS) && defined(SFDP)
#include <neatogen/overlap.h>
#endif
#include <stdbool.h>
#ifdef IPSEPCOLA
#include <vpsc/csolve_VPSC.h>
#include <neatogen/quad_prog_vpsc.h>
#endif
#include <stddef.h>
#include <util/agxbuf.h>
#include <util/alloc.h>
#include <util/debug.h>
#include <util/gv_ctype.h>
#include <util/startswith.h>
#include <util/strcasecmp.h>

#define SEPFACT         0.8 // default esep/sep

static const double incr = 0.05;	/* Increase bounding box by adding
				 * incr * dimension around box.
				 */

typedef struct {
  Site **sites; ///< array of pointers to sites; used in qsort
  Site **endSite; ///< sentinel on sites array
  Point nw, ne, sw, se; ///< corners of clipping window
  Site **nextSite;
} state_t;

static void setBoundBox(state_t *st, Point *ll, Point *ur) {
    pxmin = ll->x;
    pxmax = ur->x;
    pymin = ll->y;
    pymax = ur->y;
    st->nw.x = st->sw.x = pxmin;
    st->ne.x = st->se.x = pxmax;
    st->nw.y = st->ne.y = pymax;
    st->sw.y = st->se.y = pymin;
}

/// Free node resources.
static void freeNodes(void)
{
    for (size_t i = 0; i < nsites; i++) {
	breakPoly(&nodeInfo[i].poly);
    }
    polyFree();
    if (nodeInfo != NULL) {
	free(nodeInfo->verts); // Free vertices
    }
    free(nodeInfo);
}

/*   Compute extremes of graph, then set up bounding box.
 *   If user supplied a bounding box, use that;
 *   else if "window" is a graph attribute, use that; 
 *   otherwise, define bounding box as a percentage expansion of
 *   graph extremes.
 *   In the first two cases, check that graph fits in bounding box.
 */
static void chkBoundBox(state_t *st, Agraph_t *graph) {
    Point ll, ur;

    double x_min = DBL_MAX;
    double y_min = DBL_MAX;
    double x_max = -DBL_MAX;
    double y_max = -DBL_MAX;
    assert(nsites > 0);
    for (size_t i = 0; i < nsites; ++i) {
	Info_t *ip = &nodeInfo[i];
	Poly *pp = &ip->poly;
	double x = ip->site.coord.x;
	double y = ip->site.coord.y;
	x_min = fmin(x_min, pp->origin.x + x);
	y_min = fmin(y_min, pp->origin.y + y);
	x_max = fmax(x_max, pp->corner.x + x);
	y_max = fmax(y_max, pp->corner.y + y);
    }

    // create initial bounding box by adding margin × dimension around box
    // enclosing nodes
    char *marg = agget(graph, "voro_margin");
    const double margin = (marg && *marg != '\0') ? atof(marg) : 0.05;
    double ydelta = margin * (y_max - y_min);
    double xdelta = margin * (x_max - x_min);
    ll.x = x_min - xdelta;
    ll.y = y_min - ydelta;
    ur.x = x_max + xdelta;
    ur.y = y_max + ydelta;

    setBoundBox(st, &ll, &ur);
}

 /// For each node in the graph, create a Info data structure 
static int makeInfo(Agraph_t * graph)
{
    int (*polyf)(Poly *, Agnode_t *, double, double);

    assert(agnnodes(graph) >= 0);
    nsites = (size_t)agnnodes(graph);
    geominit();

    nodeInfo = gv_calloc(nsites, sizeof(Info_t));

    Agnode_t *node = agfstnode(graph);

    expand_t pmargin = sepFactor (graph);

    if (pmargin.doAdd) {
	polyf = makeAddPoly;
	/* we need inches for makeAddPoly */
	pmargin.x = PS2INCH(pmargin.x);
	pmargin.y = PS2INCH(pmargin.y);
    }
	
    else polyf = makePoly;
    for (size_t i = 0; i < nsites; i++) {
	Info_t *ip = &nodeInfo[i];
	ip->site.coord.x = ND_pos(node)[0];
	ip->site.coord.y = ND_pos(node)[1];

	if (polyf(&ip->poly, node, pmargin.x, pmargin.y)) {
	    free (nodeInfo);
	    nodeInfo = NULL;
	    return 1;
        }

	ip->site.sitenbr = i;
	ip->node = node;
	ip->verts = NULL;
	ip->n_verts = 0;
	node = agnxtnode(graph, node);
    }
    return 0;
}

/* sort sites on y, then x, coord */
static int scomp(const void *S1, const void *S2)
{
    const Site *s1 = *(Site *const *)S1;
    const Site *s2 = *(Site *const *)S2;
    if (s1->coord.y < s2->coord.y)
	return -1;
    if (s1->coord.y > s2->coord.y)
	return 1;
    if (s1->coord.x < s2->coord.x)
	return -1;
    if (s1->coord.x > s2->coord.x)
	return 1;
    return 0;
}

 /// Fill array of pointer to sites and sort the sites using scomp
static void sortSites(state_t *st) {
    if (st->sites == NULL) {
	st->sites = gv_calloc(nsites, sizeof(Site*));
	st->endSite = st->sites + nsites;
    }

    for (size_t i = 0; i < nsites; i++) {
	Info_t *ip = &nodeInfo[i];
	st->sites[i] = &ip->site;
	ip->verts = NULL;
	ip->n_verts = 0;
    }

    qsort(st->sites, nsites, sizeof(Site *), scomp);

    /* Reset site index for nextOne */
    st->nextSite = st->sites;

}

static void geomUpdate(state_t *st, int doSort) {
    if (doSort)
	sortSites(st);

    /* compute ranges */
    xmin = DBL_MAX;
    xmax = -DBL_MAX;
    assert(nsites > 0);
    for (size_t i = 0; i < nsites; ++i) {
	xmin = fmin(xmin, st->sites[i]->coord.x);
	xmax = fmax(xmax, st->sites[i]->coord.x);
    }
    ymin = st->sites[0]->coord.y;
    ymax = st->sites[nsites - 1]->coord.y;

    deltax = xmax - xmin;
}

static Site *nextOne(void *state) {
    state_t *st = state;
    if (st->nextSite < st->endSite) {
	return *st->nextSite++;
    } else
	return NULL;
}

/// Check for nodes with identical positions and tweak the positions.
static void rmEquality(state_t *st) {
    sortSites(st);

    for (Site **ip = st->sites; ip < st->endSite; ) {
	Site **jp = ip + 1;
	if (jp >= st->endSite ||
	    (*jp)->coord.x != (*ip)->coord.x ||
	    (*jp)->coord.y != (*ip)->coord.y) {
	    ip = jp;
	    continue;
	}

	/* Find first node kp with position different from ip */
	int cnt = 2;
	Site **kp = jp + 1;
	while (kp < st->endSite &&
	       (*kp)->coord.x == (*ip)->coord.x &&
	       (*kp)->coord.y == (*ip)->coord.y) {
	    cnt++;
	    jp = kp;
	    kp = jp + 1;
	}

	/* If next node exists and is on the same line */
	if (kp < st->endSite && (*kp)->coord.y == (*ip)->coord.y) {
	    const double xdel = ((*kp)->coord.x - (*ip)->coord.x) / cnt;
	    int i = 1;
	    for (jp = ip + 1; jp < kp; jp++) {
		(*jp)->coord.x += i * xdel;
		i++;
	    }
	} else {		/* nothing is to the right */
	    Info_t *info;
	    for (jp = ip + 1; jp < kp; ip++, jp++) {
		info = nodeInfo + (*ip)->sitenbr;
		double xdel = info->poly.corner.x - info->poly.origin.x;
		info = nodeInfo + (*jp)->sitenbr;
		xdel += info->poly.corner.x - info->poly.origin.x;
		(*jp)->coord.x = (*ip)->coord.x + xdel / 2;
	    }
	}
	ip = kp;
    }
}

/// Count number of node-node overlaps at iteration iter.
static unsigned countOverlap(unsigned iter) {
    unsigned count = 0;

    for (size_t i = 0; i < nsites; i++)
	nodeInfo[i].overlaps = false;

    for (size_t i = 0; i < nsites - 1; i++) {
	Info_t *ip = &nodeInfo[i];
	for (size_t j = i + 1; j < nsites; j++) {
	    Info_t *jp = &nodeInfo[j];
	    if (polyOverlap(ip->site.coord, &ip->poly, jp->site.coord, &jp->poly)) {
		count++;
		ip->overlaps = true;
		jp->overlaps = true;
	    }
	}
    }

    if (Verbose > 1)
	fprintf(stderr, "overlap [%u] : %u\n", iter, count);
    return count;
}

static void increaseBoundBox(state_t *st) {
    Point ur = {.x = pxmax, .y = pymax};
    Point ll = {.x = pxmin, .y = pymin};

    const double ydelta = incr * (ur.y - ll.y);
    const double xdelta = incr * (ur.x - ll.x);

    ur.x += xdelta;
    ur.y += ydelta;
    ll.x -= xdelta;
    ll.y -= ydelta;

    setBoundBox(st, &ll, &ur);
}

/// Area of triangle whose vertices are a,b,c
static double areaOf(Point a, Point b, Point c)
{
    return fabs(a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)) / 2;
}

/* Compute centroid of triangle with vertices a, b, c.
 * Return coordinates in x and y.
 */
static void centroidOf(Point a, Point b, Point c, double *x, double *y)
{
    *x = (a.x + b.x + c.x) / 3;
    *y = (a.y + b.y + c.y) / 3;
}

/* The new position is the centroid of the voronoi polygon. This is the weighted
 * sum of the centroids of a triangulation, normalized to the total area.
 */
static void newpos(Info_t * ip)
{
    const Point anchor = ip->verts[0];
    double totalArea = 0.0;
    double cx = 0.0;
    double cy = 0.0;
    double x;
    double y;

    for (size_t i = 1; i + 1 < ip->n_verts; ++i) {
	const Point p = ip->verts[i];
	const Point q = ip->verts[i + 1];
	const double area = areaOf(anchor, p, q);
	centroidOf(anchor, p, q, &x, &y);
	cx += area * x;
	cy += area * y;
	totalArea += area;
    }

    ip->site.coord.x = cx / totalArea;
    ip->site.coord.y = cy / totalArea;
}

 /* Add corners of clipping window to appropriate sites.
  * A site gets a corner if it is the closest site to that corner.
  */
static void addCorners(const state_t *st) {
    Info_t *ip = nodeInfo;
    Info_t *sws = ip;
    Info_t *nws = ip;
    Info_t *ses = ip;
    Info_t *nes = ip;
    double swd = dist_2(ip->site.coord, st->sw);
    double nwd = dist_2(ip->site.coord, st->nw);
    double sed = dist_2(ip->site.coord, st->se);
    double ned = dist_2(ip->site.coord, st->ne);

    for (size_t i = 1; i < nsites; i++) {
	ip = &nodeInfo[i];
	double d = dist_2(ip->site.coord, st->sw);
	if (d < swd) {
	    swd = d;
	    sws = ip;
	}
	d = dist_2(ip->site.coord, st->se);
	if (d < sed) {
	    sed = d;
	    ses = ip;
	}
	d = dist_2(ip->site.coord, st->nw);
	if (d < nwd) {
	    nwd = d;
	    nws = ip;
	}
	d = dist_2(ip->site.coord, st->ne);
	if (d < ned) {
	    ned = d;
	    nes = ip;
	}
    }

    addVertex(&sws->site, st->sw.x, st->sw.y);
    addVertex(&ses->site, st->se.x, st->se.y);
    addVertex(&nws->site, st->nw.x, st->nw.y);
    addVertex(&nes->site, st->ne.x, st->ne.y);
}

 /* Calculate the new position of a site as the centroid
  * of its voronoi polygon, if it overlaps other nodes.
  * The polygons are finite by being clipped to the clipping
  * window.
  * We first add the corner of the clipping windows to the
  * vertex lists of the appropriate sites.
  *
  * @param st Algorithm state
  * @param doAll Move all nodes, regardless of overlap
  */
static void newPos(const state_t *st, bool doAll) {
    addCorners(st);
    for (size_t i = 0; i < nsites; i++) {
	Info_t *ip = &nodeInfo[i];
	if (doAll || ip->overlaps)
	    newpos(ip);
    }
}

static int vAdjust(state_t *st) {
    unsigned iterCnt = 0;
    unsigned badLevel = 0;
    unsigned increaseCnt = 0;

    unsigned overlapCnt = countOverlap(iterCnt);

    if (overlapCnt == 0)
	return 0;

    rmEquality(st);
    geomUpdate(st, 0);
    voronoi(nextOne, st);
    for (bool doAll = false;;) {
	newPos(st, doAll);
	iterCnt++;

	const unsigned cnt = countOverlap(iterCnt);
	if (cnt == 0)
	    break;
	if (cnt >= overlapCnt)
	    badLevel++;
	else
	    badLevel = 0;
	overlapCnt = cnt;

	switch (badLevel) {
	case 0:
	    doAll = true;
	    break;
	default:
	    doAll = true;
	    increaseCnt++;
	    increaseBoundBox(st);
	    break;
	}

	geomUpdate(st, 1);
	voronoi(nextOne, st);
    }

    GV_DEBUG("Number of iterations = %u", iterCnt);
    GV_DEBUG("Number of increases = %u", increaseCnt);

    return 1;
}

static void rePos(void) {
    double f = 1.0 + incr;

    for (size_t i = 0; i < nsites; i++) {
	Info_t *ip = &nodeInfo[i];
	ip->site.coord.x *= f;
	ip->site.coord.y *= f;
    }
}

static int sAdjust(state_t *st) {
    unsigned iterCnt = 0;

    const unsigned overlapCnt = countOverlap(iterCnt);

    if (overlapCnt == 0)
	return 0;

    rmEquality(st);
    while (1) {
	rePos();
	iterCnt++;

	const unsigned cnt = countOverlap(iterCnt);
	if (cnt == 0)
	    break;
    }

    if (Verbose) {
	fprintf(stderr, "Number of iterations = %u\n", iterCnt);
    }

    return 1;
}

/// Enter new node positions into the graph
static void updateGraph(void)
{
    for (size_t i = 0; i < nsites; i++) {
	Info_t *ip = &nodeInfo[i];
	ND_pos(ip->node)[0] = ip->site.coord.x;
	ND_pos(ip->node)[1] = ip->site.coord.y;
    }
}

#define ELS "|edgelabel|"
  /* Return true if node name starts with ELS */
#define IS_LNODE(n) startswith(agnameof(n), ELS)

/// Set up array of half sizes in inches.
double *getSizes(Agraph_t * g, pointf pad, int* n_elabels, int** elabels)
{
    double *sizes = gv_calloc(Ndim * agnnodes(g), sizeof(double));
    int nedge_nodes = 0;

    for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
	if (elabels && IS_LNODE(n)) nedge_nodes++;

	const int i = ND_id(n);
	sizes[i * Ndim] = ND_width(n) * .5 + pad.x;
	sizes[i * Ndim + 1] = ND_height(n) * .5 + pad.y;
    }

    if (elabels && nedge_nodes) {
	int* elabs = gv_calloc(nedge_nodes, sizeof(int));
	nedge_nodes = 0;
	for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
	    if (IS_LNODE(n))
		elabs[nedge_nodes++] = ND_id(n);
	}
	*elabels = elabs;
	*n_elabels = nedge_nodes;
    }

    return sizes;
}

/* Assumes g is connected and simple, i.e., we can have a->b and b->a
 * but not a->b and a->b
 */
SparseMatrix makeMatrix(Agraph_t *g) {
    if (!g)
	return NULL;
    const int nnodes = agnnodes(g);
    const int nedges = agnedges(g);

    /* Assign node ids */
    int i = 0;
    for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n))
	ND_id(n) = i++;

    int *I = gv_calloc(nedges, sizeof(int));
    int *J = gv_calloc(nedges, sizeof(int));
    double *val = gv_calloc(nedges, sizeof(double));

    Agsym_t *sym = agfindedgeattr(g, "weight");

    i = 0;
    for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
	const int row = ND_id(n);
	for (Agedge_t *e = agfstout(g, n); e; e = agnxtout(g, e)) {
	    I[i] = row;
	    J[i] = ND_id(aghead(e));
	    double v;
	    if (!sym || sscanf(agxget(e, sym), "%lf", &v) != 1)
		v = 1;
	    val[i] = v;
	/* edge length */
	    i++;
	}
    }

    SparseMatrix A = SparseMatrix_from_coordinate_arrays(nedges, nnodes, nnodes,
                                                         I, J, val,
                                                         MATRIX_TYPE_REAL,
                                                         sizeof(double));

    free(I);
    free(J);
    free(val);

    return A;
}

#if defined(HAVE_GTS) && defined(SFDP)
static void fdpAdjust(graph_t *g, adjust_data *am) {
    SparseMatrix A0 = makeMatrix(g);
    SparseMatrix A = A0;
    double *pos = gv_calloc(Ndim * agnnodes(g), sizeof(double));
    expand_t sep = sepFactor(g);
    pointf pad;

    if (sep.doAdd) {
	pad.x = PS2INCH(sep.x);
	pad.y = PS2INCH(sep.y);
    } else {
	pad.x = PS2INCH(DFLT_MARGIN);
	pad.y = PS2INCH(DFLT_MARGIN);
    }
    double *sizes = getSizes(g, pad, NULL, NULL);

    for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
	double* npos = pos + Ndim * ND_id(n);
	for (int i = 0; i < Ndim; i++) {
	    npos[i] = ND_pos(n)[i];
	}
    }

    if (!SparseMatrix_is_symmetric(A, false) || A->type != MATRIX_TYPE_REAL) {
	A = SparseMatrix_get_real_adjacency_matrix_symmetrized(A);
    } else {
	A = SparseMatrix_remove_diagonal(A);
    }

    remove_overlap(Ndim, A, pos, sizes, am->value, am->scaling, 
                   ELSCHEME_NONE, 0, NULL, NULL,
                   mapBool(agget(g, "overlap_shrink"), true));

    for (Agnode_t *n = agfstnode(g); n; n = agnxtnode(g, n)) {
	double *npos = pos + Ndim * ND_id(n);
	for (int i = 0; i < Ndim; i++) {
	    ND_pos(n)[i] = npos[i];
	}
    }

    free(sizes);
    free(pos);
    if (A != A0)
	SparseMatrix_delete(A);
    SparseMatrix_delete (A0);
}
#endif

#ifdef IPSEPCOLA
static int
vpscAdjust(graph_t* G)
{
    enum { dim = 2 };
    int nnodes = agnnodes(G);
    ipsep_options opt;
    pointf *nsize = gv_calloc(nnodes, sizeof(pointf));
    float* coords[dim];
    float *f_storage = gv_calloc(dim * nnodes, sizeof(float));

    for (size_t i = 0; i < dim; i++) {
	coords[i] = f_storage + i * nnodes;
    }

    size_t j = 0;
    for (Agnode_t *v = agfstnode(G); v; v = agnxtnode(G, v)) {
	for (size_t i = 0; i < dim; i++) {
	    coords[i][j] =  (float)ND_pos(v)[i];
	}
	nsize[j].x = ND_width(v);
	nsize[j].y = ND_height(v);
	j++;
    }

    opt.diredges = 0;
    opt.edge_gap = 0;
    opt.noverlap = 2;
    opt.clusters = (cluster_data){0};
    expand_t exp_margin = sepFactor (G);
 	/* Multiply by 2 since opt.gap is the gap size, not the margin */
    if (exp_margin.doAdd) {
	opt.gap.x = 2.0*PS2INCH(exp_margin.x);
	opt.gap.y = 2.0*PS2INCH(exp_margin.y);
    }
    else {
	opt.gap.x = opt.gap.y = 2.0*PS2INCH(DFLT_MARGIN);
    }
    opt.nsize = nsize;

    removeoverlaps(nnodes, coords, &opt);

    j = 0;
    for (Agnode_t *v = agfstnode(G); v; v = agnxtnode(G, v)) {
	for (size_t i = 0; i < dim; i++) {
	    ND_pos(v)[i] = coords[i][j];
	}
	j++;
    }

    free (f_storage);
    free (nsize);
    return 0;
}
#endif

/* Return true if "normalize" is defined and valid; return angle in phi.
 * Read angle as degrees, convert to radians.
 * Guarantee -PI < phi <= PI.
 */
static int
angleSet (graph_t* g, double* phi)
{
    char* p;
    char* a = agget(g, "normalize");

    if (!a || *a == '\0')
	return 0;
    double ang = strtod (a, &p);
    if (p == a) {  /* no number */
	if (mapbool(a))
	    ang = 0.0;
	else
	    return 0;
    }
    while (ang > 180) ang -= 360;
    while (ang <= -180) ang += 360;

    *phi = RADIANS(ang);
    return 1;
}

/* If normalize is set, move first node to origin, then
 * rotate graph so that the angle of the first edge is given
 * by the degrees from normalize.
 * FIX: Generalize to allow rotation determined by graph shape.
 */
int normalize(graph_t * g)
{
    double phi;
    int ret;

    if (!angleSet(g, &phi))
	return 0;

    node_t *v = agfstnode(g);
    pointf p = {.x = ND_pos(v)[0], .y = ND_pos(v)[1]};
    for (v = agfstnode(g); v; v = agnxtnode(g, v)) {
	ND_pos(v)[0] -= p.x;
	ND_pos(v)[1] -= p.y;
    }
    if (p.x || p.y) ret = 1;
    else ret = 0;

    edge_t *e = NULL;
    for (v = agfstnode(g); v; v = agnxtnode(g, v))
	if ((e = agfstout(g, v)))
	    break;
    if (e == NULL)
	return ret;

	/* rotation necessary; pos => ccw */
    phi -= atan2(ND_pos(aghead(e))[1] - ND_pos(agtail(e))[1],
		   ND_pos(aghead(e))[0] - ND_pos(agtail(e))[0]);

    if (phi) {
	const pointf orig = {.x = ND_pos(agtail(e))[0],
	                     .y = ND_pos(agtail(e))[1]};
	const double cosv = cos(phi);
	const double sinv = sin(phi);
	for (v = agfstnode(g); v; v = agnxtnode(g, v)) {
	    p.x = ND_pos(v)[0] - orig.x;
	    p.y = ND_pos(v)[1] - orig.y;
	    ND_pos(v)[0] = p.x * cosv - p.y * sinv + orig.x;
	    ND_pos(v)[1] = p.x * sinv + p.y * cosv + orig.y;
	}
	return 1;
    }
    else return ret;
}

typedef struct {
    adjust_mode mode;
    char *attrib;
    char *print;
} lookup_t;

/* Translation table from overlap values to algorithms.
 * adjustMode[0] corresponds to overlap=true
 * adjustMode[1] corresponds to overlap=false
 */
static const lookup_t adjustMode[] = {
    {AM_NONE, "", "none"},
#if defined(HAVE_GTS) && defined(SFDP)
    {AM_PRISM, "prism", "prism"},
#endif
    {AM_VOR, "voronoi", "Voronoi"},
    {AM_NSCALE, "scale", "scaling"},
    {AM_COMPRESS, "compress", "compress"},
    {AM_VPSC, "vpsc", "vpsc"},
    {AM_IPSEP, "ipsep", "ipsep"},
    {AM_SCALE, "oscale", "old scaling"},
    {AM_SCALEXY, "scalexy", "x and y scaling"},
    {AM_ORTHO, "ortho", "orthogonal constraints"},
    {AM_ORTHO_YX, "ortho_yx", "orthogonal constraints"},
    {AM_ORTHOXY, "orthoxy", "xy orthogonal constraints"},
    {AM_ORTHOYX, "orthoyx", "yx orthogonal constraints"},
    {AM_PORTHO, "portho", "pseudo-orthogonal constraints"},
    {AM_PORTHO_YX, "portho_yx", "pseudo-orthogonal constraints"},
    {AM_PORTHOXY, "porthoxy", "xy pseudo-orthogonal constraints"},
    {AM_PORTHOYX, "porthoyx", "yx pseudo-orthogonal constraints"},
#if !(defined(HAVE_GTS) && defined(SFDP))
    {AM_PRISM, "prism", 0},
#endif
    {0}
};

/// Initialize and set prism values
static void setPrismValues(Agraph_t *g, const char *s, adjust_data *dp) {
    int v;

    if (sscanf (s, "%d", &v) > 0 && v >= 0)
	dp->value = v;
    else
	dp->value = 1000;
    dp->scaling = late_double(g, agfindgraphattr(g, "overlap_scaling"), -4.0, -1.e10);
}

/// Convert string value to internal value of adjustment mode.
static void getAdjustMode(Agraph_t *g, const char *s, adjust_data *dp) {
    const lookup_t *ap = adjustMode + 1;
    if (s == NULL || *s == '\0') {
	dp->mode = adjustMode[0].mode;
	dp->print = adjustMode[0].print;
    }
    else {
	while (ap->attrib) {
	    bool matches = strcasecmp(s, ap->attrib) == 0;
	    // "prism" takes parameters, so needs to match "prism.*"
	    matches |= ap->mode == AM_PRISM
	            && strncasecmp(s, ap->attrib, strlen(ap->attrib)) == 0;
	    if (matches) {
		if (ap->print == NULL) {
		    agwarningf("Overlap value \"%s\" unsupported - ignored\n", ap->attrib);
		    ap = &adjustMode[1];
		}
		dp->mode = ap->mode;
		dp->print = ap->print;
		if (ap->mode == AM_PRISM)
		    setPrismValues(g, s + strlen(ap->attrib), dp);
		break;
	    }
	    ap++;
	}
	if (ap->attrib == NULL ) {
	    bool v = mapbool(s);
	    bool unmappable = v != mapBool(s, true);
	    if (unmappable) {
		agwarningf("Unrecognized overlap value \"%s\" - using false\n", s);
		v = false;
	    }
	    if (v) {
		dp->mode = adjustMode[0].mode;
		dp->print = adjustMode[0].print;
	    }
	    else {
		dp->mode = adjustMode[1].mode;
		dp->print = adjustMode[1].print;
	    }
	    if (dp->mode == AM_PRISM)
		setPrismValues (g, "", dp);
	}
    }
    if (Verbose) {
	fprintf(stderr, "overlap: %s value %d scaling %.04f\n", dp->print, dp->value, dp->scaling);
    }
}

void graphAdjustMode(graph_t *G, adjust_data *dp, char *dflt) {
    char* am = agget(G, "overlap");
    getAdjustMode (G, am ? am : (dflt ? dflt : ""), dp);
}

#define ISZERO(d) (fabs(d) < 0.000000001)

static int simpleScale (graph_t* g) 
{
    pointf sc;
    int i;
    char* p;

    if ((p = agget(g, "scale"))) {
	if ((i = sscanf(p, "%lf,%lf", &sc.x, &sc.y))) {
	    if (ISZERO(sc.x)) return 0;
	    if (i == 1) sc.y = sc.x;
	    else if (ISZERO(sc.y)) return 0;
	    if (sc.y == 1 && sc.x == 1) return 0;
	    if (Verbose)
		fprintf (stderr, "scale = (%.03f,%.03f)\n", sc.x, sc.y);
	    for (node_t *n = agfstnode(g); n; n = agnxtnode(g,n)) {
		ND_pos(n)[0] *= sc.x;
		ND_pos(n)[1] *= sc.y;
	    }
	    return 1;
	}
    }
    return 0;
}

/* Use adjust_data to determine if and how to remove
 * node overlaps.
 * Return non-zero if nodes are moved.
 */
int 
removeOverlapWith (graph_t * G, adjust_data* am)
{
    int ret;

    if (agnnodes(G) < 2)
	return 0;

    int nret = normalize (G);
    nret += simpleScale (G);

    if (am->mode == AM_NONE)
	return nret;

    if (Verbose)
	fprintf(stderr, "Adjusting %s using %s\n", agnameof(G), am->print);

    if (am->mode > AM_SCALE) {
	switch (am->mode) {
	case AM_NSCALE:
	    ret = scAdjust(G, 1);
	    break;
	case AM_SCALEXY:
	    ret = scAdjust(G, 0);
	    break;
	case AM_PORTHO_YX:
	case AM_PORTHO:
	case AM_PORTHOXY:
	case AM_PORTHOYX:
	case AM_ORTHO_YX:
	case AM_ORTHO:
	case AM_ORTHOXY:
	case AM_ORTHOYX:
	    cAdjust(G, am->mode);
        ret = 0;
	    break;
	case AM_COMPRESS:
	    ret = scAdjust(G, -1);
	    break;
#if defined(HAVE_GTS) && defined(SFDP)
	case AM_PRISM:
	    fdpAdjust(G, am);
	    ret = 0;
	    break;
#endif
#ifdef IPSEPCOLA
	case AM_IPSEP:
	    return nret;   /* handled during layout */
	    break;
	case AM_VPSC:
	    ret = vpscAdjust(G);
	    break;
#endif
	default:		/* to silence warnings */
	    if (am->mode != AM_VOR && am->mode != AM_SCALE)
		agwarningf("Unhandled adjust option %s\n", am->print);
	    ret = 0;
	    break;
	}
	return nret+ret;
    }

    /* create main array */
    if (makeInfo(G)) {
	freeNodes();
	return nret;
    }

    /* establish and verify bounding box */
    state_t st = {0};
    chkBoundBox(&st, G);

    if (am->mode == AM_SCALE)
	ret = sAdjust(&st);
    else
	ret = vAdjust(&st);

    if (ret)
	updateGraph();

    freeNodes();
    free(st.sites);

    return ret+nret;
}

/// Use flag value to determine if and how to remove node overlaps.
int 
removeOverlapAs(graph_t * G, char* flag)
{
    adjust_data am;

    if (agnnodes(G) < 2)
	return 0;
    getAdjustMode(G, flag, &am);
    return removeOverlapWith (G, &am);
}

/* Remove node overlap relying on graph's overlap attribute.
 * Return non-zero if graph has changed.
 */
int adjustNodes(graph_t * G)
{
    return removeOverlapAs(G, agget(G, "overlap"));
}

/* Convert "sep" attribute into expand_t.
 * Input "+x,y" becomes {x,y,true}
 * Input "x,y" becomes {1 + x/sepfact,1 + y/sepfact,false}
 * Return 1 on success, 0 on failure
 */
static int parseFactor(char *s, expand_t *pp, double sepfact, double dflt) {
    int i;

    while (gv_isspace(*s)) s++;
    if (*s == '+') {
	s++;
	pp->doAdd = true;
    }
    else pp->doAdd = false;

    double x, y;
    if ((i = sscanf(s, "%lf,%lf", &x, &y))) {
	if (i == 1) y = x;
	if (pp->doAdd) {
	    if (sepfact > 1) {
		pp->x = fmin(dflt, x / sepfact);
		pp->y = fmin(dflt, y / sepfact);
	    }
	    else if (sepfact < 1) {
		pp->x = fmax(dflt, x / sepfact);
		pp->y = fmax(dflt, y / sepfact);
	    }
	    else {
		pp->x = x;
		pp->y = y;
	    }
	}
	else {
	    pp->x = 1.0 + x / sepfact;
	    pp->y = 1.0 + y / sepfact;
	}
	return 1;
    }
    else return 0;
}

expand_t
sepFactor(graph_t* g)
{
    expand_t pmargin;
    char*  marg;

    if ((marg = agget(g, "sep")) && parseFactor(marg, &pmargin, 1.0, 0)) {
    }
    else if ((marg = agget(g, "esep")) && parseFactor(marg, &pmargin, SEPFACT, DFLT_MARGIN)) {
    }
    else { /* default */
	pmargin.x = pmargin.y = DFLT_MARGIN;
	pmargin.doAdd = true;
    }
    if (Verbose)
	fprintf (stderr, "Node separation: add=%d (%f,%f)\n",
	    pmargin.doAdd, pmargin.x, pmargin.y);
    return pmargin;
}

/* This value should be smaller than the sep value used to expand
 * nodes during adjustment. If not, when the adjustment pass produces
 * a fairly tight layout, the spline code will find that some nodes
 * still overlap.
 */
expand_t
esepFactor(graph_t* g)
{
    expand_t pmargin;
    char*  marg;

    if ((marg = agget(g, "esep")) && parseFactor(marg, &pmargin, 1.0, 0)) {
    }
    else if ((marg = agget(g, "sep")) &&
             parseFactor(marg, &pmargin, 1.0 / SEPFACT, SEPFACT * DFLT_MARGIN)) {
    }
    else {
	pmargin.x = pmargin.y = SEPFACT*DFLT_MARGIN;
	pmargin.doAdd = true;
    }
    if (Verbose)
	fprintf (stderr, "Edge separation: add=%d (%f,%f)\n",
	    pmargin.doAdd, pmargin.x, pmargin.y);
    return pmargin;
}