1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <assert.h>
#include <limits.h>
#include <neatogen/kkutils.h>
#include <neatogen/closest.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <util/alloc.h>
#include <util/gv_math.h>
#include <util/list.h>
#include <util/sort.h>
/*****************************************
** This module contains functions that **
** given a 1-D layout construct a graph **
** where close nodes in this layout are **
** adjacent **
*****************************************/
typedef struct {
/* this structure represents two nodes in the 1-D layout */
size_t left; ///< the left node in the pair
size_t right; ///< the right node in the pair
double dist; /* distance between the nodes in the layout */
} Pair;
#define LT(p,q) ((p).dist < (q).dist)
#define EQ(p,q) ((p).dist == (q).dist)
typedef LIST(Pair) pairs_t;
static void push(pairs_t *s, Pair x) {
LIST_PUSH_BACK(s, x);
}
static bool pop(pairs_t *s, Pair *x) {
// is the stack empty?
if (LIST_IS_EMPTY(s)) {
return false;
}
// remove the top and pass it back to the caller
*x = *LIST_BACK(s);
LIST_DROP_BACK(s);
return true;
}
#define sub(h,i) (LIST_GET((h), (i)))
/* An auxulliary data structure (a heap) for
* finding the closest pair in the layout
*/
typedef struct {
Pair *data;
size_t heapSize;
size_t maxSize;
} PairHeap;
#define left(i) (2*(i))
#define right(i) (2*(i)+1)
#define parent(i) ((i)/2)
#define insideHeap(h,i) ((i)<h->heapSize)
#define greaterPriority(h,i,j) \
(LT(h->data[i],h->data[j]) || ((EQ(h->data[i],h->data[j])) && (rand()%2)))
static void heapify(PairHeap *h, size_t i) {
size_t largest;
while (1) {
size_t l = left(i);
size_t r = right(i);
if (insideHeap(h, l) && greaterPriority(h, l, i))
largest = l;
else
largest = i;
if (insideHeap(h, r) && greaterPriority(h, r, largest))
largest = r;
if (largest == i)
break;
SWAP(&h->data[largest], &h->data[i]);
i = largest;
}
}
static void freeHeap(PairHeap * h)
{
free(h->data);
}
static void initHeap(PairHeap *h, double *place, size_t *ordering, size_t n) {
Pair edge;
h->heapSize = n == 0 ? 0 : (n - 1);
h->maxSize = h->heapSize;
h->data = gv_calloc(h->maxSize, sizeof(Pair));
for (size_t i = 0; n != 0 && i < n - 1; i++) {
edge.left = ordering[i];
edge.right = ordering[i + 1];
edge.dist = place[ordering[i + 1]] - place[ordering[i]];
h->data[i] = edge;
}
for (size_t j = (n - 1) / 2; n != 0 && j != SIZE_MAX; j--) {
heapify(h, j);
}
}
static bool extractMax(PairHeap * h, Pair * max)
{
if (h->heapSize == 0)
return false;
*max = h->data[0];
h->data[0] = h->data[h->heapSize - 1];
h->heapSize--;
heapify(h, 0);
return true;
}
static void insert(PairHeap * h, Pair edge)
{
size_t i = h->heapSize;
if (h->heapSize == h->maxSize) {
size_t newSize = h->maxSize * 2;
h->data = gv_recalloc(h->data, h->maxSize, newSize, sizeof(Pair));
h->maxSize = newSize;
}
h->heapSize++;
h->data[i] = edge;
while (i > 0 && greaterPriority(h, i, parent(i))) {
SWAP(&h->data[i], &h->data[parent(i)]);
i = parent(i);
}
}
static int cmp(const void *a, const void *b, void *context) {
const size_t *x = a;
const size_t *y = b;
const double *place = context;
if (place[*x] < place[*y]) {
return -1;
}
if (place[*x] > place[*y]) {
return 1;
}
return 0;
}
static void find_closest_pairs(double *place, size_t n, int num_pairs,
pairs_t* pairs_stack) {
/* Fill the stack 'pairs_stack' with 'num_pairs' closest pairs int the 1-D layout 'place' */
PairHeap heap;
size_t *left = gv_calloc(n, sizeof(size_t));
size_t *right = gv_calloc(n, sizeof(size_t));
Pair pair = {0}, new_pair;
/* Order the nodes according to their place */
size_t *ordering = gv_calloc(n, sizeof(size_t));
size_t *inv_ordering = gv_calloc(n, sizeof(size_t));
for (size_t i = 0; i < n; i++) {
ordering[i] = i;
}
gv_sort(ordering, n, sizeof(ordering[0]), cmp, place);
for (size_t i = 0; i < n; i++) {
inv_ordering[ordering[i]] = i;
}
/* Initialize heap with all consecutive pairs */
initHeap(&heap, place, ordering, n);
/* store the leftmost and rightmost neighbors of each node that were entered into heap */
for (size_t i = 1; i < n; i++) {
left[ordering[i]] = ordering[i - 1];
}
for (size_t i = 0; n != 0 && i < n - 1; i++) {
right[ordering[i]] = ordering[i + 1];
}
/* extract the 'num_pairs' closest pairs */
for (int i = 0; i < num_pairs; i++) {
if (!extractMax(&heap, &pair)) {
break; /* not enough pairs */
}
push(pairs_stack, pair);
/* insert to heap "descendant" pairs */
size_t left_index = inv_ordering[pair.left];
size_t right_index = inv_ordering[pair.right];
if (left_index > 0) {
size_t neighbor = ordering[left_index - 1];
if (inv_ordering[right[neighbor]] < right_index) {
/* we have a new pair */
new_pair.left = neighbor;
new_pair.right = pair.right;
new_pair.dist = place[pair.right] - place[neighbor];
insert(&heap, new_pair);
right[neighbor] = pair.right;
left[pair.right] = neighbor;
}
}
if (right_index < n - 1) {
size_t neighbor = ordering[right_index + 1];
if (inv_ordering[left[neighbor]] > left_index) {
/* we have a new pair */
new_pair.left = pair.left;
new_pair.right = neighbor;
new_pair.dist = place[neighbor] - place[pair.left];
insert(&heap, new_pair);
left[neighbor] = pair.left;
right[pair.left] = neighbor;
}
}
}
free(left);
free(right);
free(ordering);
free(inv_ordering);
freeHeap(&heap);
}
static void add_edge(vtx_data * graph, int u, int v)
{
for (size_t i = 0; i < graph[u].nedges; i++) {
if (graph[u].edges[i] == v) {
/* edge already exist */
return;
}
}
/* add the edge */
graph[u].edges[graph[u].nedges++] = v;
graph[v].edges[graph[v].nedges++] = u;
if (graph[0].ewgts != NULL) {
graph[u].ewgts[0]--;
graph[v].ewgts[0]--;
}
}
static vtx_data *construct_graph(size_t n, pairs_t *edges_stack) {
/* construct an unweighted graph using the edges 'edges_stack' */
/* first compute new degrees and nedges; */
int *degrees = gv_calloc(n, sizeof(int));
size_t top = LIST_SIZE(edges_stack);
size_t new_nedges = 2 * top + n;
Pair pair;
int *edges = gv_calloc(new_nedges, sizeof(int));
float *weights = gv_calloc(new_nedges, sizeof(float));
for (size_t i = 0; i < n; i++) {
degrees[i] = 1; /* save place for the self loop */
}
for (size_t i = 0; i < top; i++) {
pair = sub(edges_stack, i);
degrees[pair.left]++;
degrees[pair.right]++;
}
/* copy graph into new_graph: */
for (size_t i = 0; i < new_nedges; i++) {
weights[i] = 1.0;
}
vtx_data *const new_graph = gv_calloc(n, sizeof(vtx_data));
for (size_t i = 0; i < n; i++) {
new_graph[i].nedges = 1;
new_graph[i].ewgts = weights;
new_graph[i].edges = edges;
assert(i <= INT_MAX);
*edges = (int)i; // self loop for Lap
*weights = 0; /* self loop weight for Lap */
weights += degrees[i];
edges += degrees[i]; /* reserve space for possible more edges */
}
free(degrees);
/* add all edges from stack */
while (pop(edges_stack, &pair)) {
assert(pair.left <= INT_MAX);
assert(pair.right <= INT_MAX);
add_edge(new_graph, (int)pair.left, (int)pair.right);
}
return new_graph;
}
void
closest_pairs2graph(double *place, int n, int num_pairs, vtx_data ** graph)
{
/* build a graph with with edges between the 'num_pairs' closest pairs in the 1-D space: 'place' */
pairs_t pairs_stack = {0};
assert(n >= 0);
find_closest_pairs(place, (size_t)n, num_pairs, &pairs_stack);
*graph = construct_graph((size_t)n, &pairs_stack);
LIST_FREE(&pairs_stack);
}
|