File: conjgrad.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (233 lines) | stat: -rw-r--r-- 6,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <neatogen/matrix_ops.h>
#include <neatogen/conjgrad.h>
#include <stdbool.h>
#include <stdlib.h>
#include <util/alloc.h>

/*************************
** C.G. method - SPARSE  *
*************************/

int conjugate_gradient
    (vtx_data * A, double *x, double *b, int n, double tol,
     int max_iterations) {
    /* Solves Ax=b using Conjugate-Gradients method */
    /* 'x' and 'b' are orthogonalized against 1 */

    int i, rv = 0;

    double alpha, beta, r_r, r_r_new, p_Ap;
    double *r = gv_calloc(n, sizeof(double));
    double *p = gv_calloc(n, sizeof(double));
    double *Ap = gv_calloc(n, sizeof(double));
    double *Ax = gv_calloc(n, sizeof(double));
    double *alphap = gv_calloc(n, sizeof(double));

    double *orth_b = gv_calloc(n, sizeof(double));
    copy_vector(n, b, orth_b);
    orthog1(n, orth_b);
    orthog1(n, x);
    right_mult_with_vector(A, n, x, Ax);
    vectors_subtraction(n, orth_b, Ax, r);
    copy_vector(n, r, p);
    r_r = vectors_inner_product(n, r, r);

    for (i = 0; i < max_iterations && max_abs(n, r) > tol; i++) {
	right_mult_with_vector(A, n, p, Ap);
	p_Ap = vectors_inner_product(n, p, Ap);
	if (p_Ap == 0)
	    break;		/*exit(1); */
	alpha = r_r / p_Ap;

	/* derive new x: */
	vectors_scalar_mult(n, p, alpha, alphap);
	vectors_addition(n, x, alphap, x);

	/* compute values for next iteration: */
	if (i < max_iterations - 1) {	/* not last iteration */
	    vectors_scalar_mult(n, Ap, alpha, Ap);
	    vectors_subtraction(n, r, Ap, r);	/* fast computation of r, the residual */

	    r_r_new = vectors_inner_product(n, r, r);
	    if (r_r == 0) {
		agerrorf("conjugate_gradient: unexpected length 0 vector\n");
		rv = 1;
		goto cleanup0;
	    }
	    beta = r_r_new / r_r;
	    r_r = r_r_new;
	    vectors_scalar_mult(n, p, beta, p);
	    vectors_addition(n, r, p, p);
	}
    }

cleanup0 :
    free(r);
    free(p);
    free(Ap);
    free(Ax);
    free(alphap);
    free(orth_b);

    return rv;
}


/****************************
** C.G. method - DENSE      *
****************************/

int conjugate_gradient_f
    (float **A, double *x, double *b, int n, double tol,
     int max_iterations, bool ortho1) {
    /* Solves Ax=b using Conjugate-Gradients method */
    /* 'x' and 'b' are orthogonalized against 1 if 'ortho1=true' */

    int i, rv = 0;

    double alpha, beta, r_r, r_r_new, p_Ap;
    double *r = gv_calloc(n, sizeof(double));
    double *p = gv_calloc(n, sizeof(double));
    double *Ap = gv_calloc(n, sizeof(double));
    double *Ax = gv_calloc(n, sizeof(double));
    double *alphap = gv_calloc(n, sizeof(double));

    double *orth_b = gv_calloc(n, sizeof(double));
    copy_vector(n, b, orth_b);
    if (ortho1) {
	orthog1(n, orth_b);
	orthog1(n, x);
    }
    right_mult_with_vector_f(A, n, x, Ax);
    vectors_subtraction(n, orth_b, Ax, r);
    copy_vector(n, r, p);
    r_r = vectors_inner_product(n, r, r);

    for (i = 0; i < max_iterations && max_abs(n, r) > tol; i++) {
	right_mult_with_vector_f(A, n, p, Ap);
	p_Ap = vectors_inner_product(n, p, Ap);
	if (p_Ap == 0)
	    break;		/*exit(1); */
	alpha = r_r / p_Ap;

	/* derive new x: */
	vectors_scalar_mult(n, p, alpha, alphap);
	vectors_addition(n, x, alphap, x);

	/* compute values for next iteration: */
	if (i < max_iterations - 1) {	/* not last iteration */
	    vectors_scalar_mult(n, Ap, alpha, Ap);
	    vectors_subtraction(n, r, Ap, r);	/* fast computation of r, the residual */

	    // Alternative accurate, but slow, computation of the residual - r
	    /* right_mult_with_vector(A, n, x, Ax); */
	    /* vectors_subtraction(n,b,Ax,r); */

	    r_r_new = vectors_inner_product(n, r, r);
	    if (r_r == 0) {
		rv = 1;
		agerrorf("conjugate_gradient: unexpected length 0 vector\n");
		goto cleanup1;
	    }
	    beta = r_r_new / r_r;
	    r_r = r_r_new;
	    vectors_scalar_mult(n, p, beta, p);
	    vectors_addition(n, r, p, p);
	}
    }
cleanup1:
    free(r);
    free(p);
    free(Ap);
    free(Ax);
    free(alphap);
    free(orth_b);

    return rv;
}

int
conjugate_gradient_mkernel(float *A, float *x, float *b, int n,
			   double tol, int max_iterations)
{
    /* Solves Ax=b using Conjugate-Gradients method */
    /* A is a packed symmetric matrix */
    // matrix A is “packed” (only upper triangular portion exists, row-major)

    int i, rv = 0;

    double alpha, beta, r_r, r_r_new, p_Ap;
    float *r = gv_calloc(n, sizeof(float));
    float *p = gv_calloc(n, sizeof(float));
    float *Ap = gv_calloc(n, sizeof(float));
    float *Ax = gv_calloc(n, sizeof(float));

    /* centering x and b  */
    orthog1f(n, x);
    orthog1f(n, b);

    right_mult_with_vector_ff(A, n, x, Ax);
    /* centering Ax */
    orthog1f(n, Ax);


    vectors_subtractionf(n, b, Ax, r);
    copy_vectorf(n, r, p);

    r_r = vectors_inner_productf(n, r, r);

    for (i = 0; i < max_iterations && max_absf(n, r) > tol; i++) {
	orthog1f(n, p);
	orthog1f(n, x);
	orthog1f(n, r);

	right_mult_with_vector_ff(A, n, p, Ap);
	/* centering Ap */
	orthog1f(n, Ap);

	p_Ap = vectors_inner_productf(n, p, Ap);
	if (p_Ap == 0)
	    break;
	alpha = r_r / p_Ap;

	/* derive new x: */
	vectors_mult_additionf(n, x, (float) alpha, p);

	/* compute values for next iteration: */
	if (i < max_iterations - 1) {	/* not last iteration */
	    vectors_mult_additionf(n, r, (float) -alpha, Ap);


	    r_r_new = vectors_inner_productf(n, r, r);

	    if (r_r == 0) {
		rv = 1;
		agerrorf("conjugate_gradient: unexpected length 0 vector\n");
		goto cleanup2;
	    }
	    beta = r_r_new / r_r;
	    r_r = r_r_new;

		for (size_t j = 0; j < (size_t)n; ++j) {
			p[j] = (float)beta * p[j] + r[j];
		}
	}
    }

cleanup2 :
    free(r);
    free(p);
    free(Ap);
    free(Ax);
    return rv;
}