1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include "config.h"
#include <common/geom.h>
#include <math.h>
#include <neatogen/neato.h>
#include <neatogen/adjust.h>
#include <stddef.h>
#include <stdbool.h>
#include <util/alloc.h>
#include <util/itos.h>
#include <util/list.h>
/* For precision, scale up before algorithms, then scale down */
#define SCALE 10
#define SCALE2 (SCALE/2)
typedef struct nitem {
Dtlink_t link;
int val;
point pos; /* position for sorting */
node_t *np; /* base node */
node_t *cnode; /* corresponding node in constraint graph */
node_t *vnode; /* corresponding node in neighbor graph */
box bb;
} nitem;
typedef int (*distfn) (box *, box *);
typedef int (*intersectfn) (nitem *, nitem *);
static int cmpitem(void *item1, void *item2) {
const int *p1 = item1;
const int *p2 = item2;
if (*p1 < *p2) {
return -1;
}
if (*p1 > *p2) {
return 1;
}
return 0;
}
static Dtdisc_t constr = {
offsetof(nitem, val),
sizeof(int),
offsetof(nitem, link),
NULL,
NULL,
cmpitem,
};
static int distY(box * b1, box * b2)
{
return ((b1->UR.y - b1->LL.y) + (b2->UR.y - b2->LL.y)) / 2;
}
static int distX(box * b1, box * b2)
{
return ((b1->UR.x - b1->LL.x) + (b2->UR.x - b2->LL.x)) / 2;
}
/* Return true if boxes could overlap if shifted in y but don't,
* or if actually overlap and an y move is smallest to remove overlap.
* Otherwise (no x overlap or a x move is smaller), return false.
* Assume q pos to above of p pos.
*/
static int intersectX0(nitem * p, nitem * q)
{
int xdelta, ydelta;
int v = p->bb.LL.x <= q->bb.UR.x && q->bb.LL.x <= p->bb.UR.x;
if (v == 0) /* no x overlap */
return 0;
if (p->bb.UR.y < q->bb.LL.y) /* but boxes don't really overlap */
return 1;
ydelta = distY(&p->bb,&q->bb) - (q->pos.y - p->pos.y);
if (q->pos.x >= p->pos.x)
xdelta = distX(&p->bb,&q->bb) - (q->pos.x - p->pos.x);
else
xdelta = distX(&p->bb,&q->bb) - (p->pos.x - q->pos.x);
return ydelta <= xdelta;
}
/* Return true if boxes could overlap if shifted in x but don't,
* or if actually overlap and an x move is smallest to remove overlap.
* Otherwise (no y overlap or a y move is smaller), return false.
* Assume q pos to right of p pos.
*/
static int intersectY0(nitem * p, nitem * q)
{
int xdelta, ydelta;
int v = p->bb.LL.y <= q->bb.UR.y && q->bb.LL.y <= p->bb.UR.y;
if (v == 0) /* no y overlap */
return 0;
if (p->bb.UR.x < q->bb.LL.x) /* but boxes don't really overlap */
return 1;
xdelta = distX(&p->bb,&q->bb) - (q->pos.x - p->pos.x);
if (q->pos.y >= p->pos.y)
ydelta = distY(&p->bb,&q->bb) - (q->pos.y - p->pos.y);
else
ydelta = distY(&p->bb,&q->bb) - (p->pos.y - q->pos.y);
return xdelta <= ydelta;
}
static int intersectY(nitem * p, nitem * q)
{
return p->bb.LL.y <= q->bb.UR.y && q->bb.LL.y <= p->bb.UR.y;
}
static int intersectX(nitem * p, nitem * q)
{
return p->bb.LL.x <= q->bb.UR.x && q->bb.LL.x <= p->bb.UR.x;
}
static void mapGraphs(graph_t * g, graph_t * cg, distfn dist)
{
node_t *n;
edge_t *e;
edge_t *ce;
node_t *t;
node_t *h;
nitem *tp;
nitem *hp;
int delta;
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
tp = ND_alg(n);
t = tp->cnode;
for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
hp = ND_alg(aghead(e));
delta = dist(&tp->bb, &hp->bb);
h = hp->cnode;
ce = agedge(cg, t, h, NULL, 1);
agbindrec(ce, "Agedgeinfo_t", sizeof(Agedgeinfo_t), true);
ED_weight(ce) = 1;
if (ED_minlen(ce) < delta) {
if (ED_minlen(ce) == 0.0) {
elist_append(ce, ND_out(t));
elist_append(ce, ND_in(h));
}
ED_minlen(ce) = delta;
}
}
}
}
#if defined(DEBUG) && DEBUG > 1
static int
indegree (graph_t * g, node_t *n)
{
edge_t *e;
int cnt = 0;
for (e = agfstin(g,n); e; e = agnxtin(g,e)) cnt++;
return cnt;
}
static int
outdegree (graph_t * g, node_t *n)
{
edge_t *e;
int cnt = 0;
for (e = agfstout(g,n); e; e = agnxtout(g,e)) cnt++;
return cnt;
}
static void
validate(graph_t * g)
{
node_t *n;
edge_t *e;
int i, cnt;
cnt = 0;
for (n = GD_nlist(g);n; n = ND_next(n)) {
assert(outdegree(g,n) == ND_out(n).size);
for (i = 0; (e = ND_out(n).list[i]); i++) {
assert(agtail(e) == n);
assert( e == agfindedge(g, n, aghead(e)));
}
assert(indegree(g,n) == ND_in(n).size);
for (i = 0; (e = ND_in(n).list[i]); i++) {
assert(aghead(e) == n);
assert( e == agfindedge(g, agtail(e), n));
}
cnt++;
}
assert (agnnodes(g) == cnt);
}
#endif
/* Similar to mkConstraintG, except it doesn't enforce orthogonal
* ordering. If there is overlap, as defined by intersect, the
* nodes will kept/pushed apart in the current order. If not, no
* constraint is enforced. If a constraint edge is added, and it
* corresponds to a real edge, we increase the weight in an attempt
* to keep the resulting shift short.
*/
static graph_t *mkNConstraintG(graph_t * g, Dt_t * list,
intersectfn intersect, distfn dist)
{
nitem *p;
nitem *nxp;
node_t *n;
edge_t *e;
node_t *lastn = NULL;
graph_t *cg = agopen("cg", Agstrictdirected, NULL);
agbindrec(cg, "Agraphinfo_t", sizeof(Agraphinfo_t), true); // graph custom data
for (p = (nitem *)dtflatten(list); p; p = (nitem *)dtlink(list, p)) {
n = agnode(cg, agnameof(p->np), 1); /* FIX */
agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true); //node custom data
ND_alg(n) = p;
p->cnode = n;
alloc_elist(0, ND_in(n));
alloc_elist(0, ND_out(n));
if (lastn) {
ND_next(lastn) = n;
lastn = n;
} else {
lastn = GD_nlist(cg) = n;
}
}
for (p = (nitem *)dtflatten(list); p; p = (nitem *)dtlink(list, p)) {
for (nxp = (nitem *)dtlink(link, p); nxp; nxp = (nitem *)dtlink(list, nxp)) {
e = NULL;
if (intersect(p, nxp)) {
double delta = dist(&p->bb, &nxp->bb);
e = agedge(cg, p->cnode, nxp->cnode, NULL, 1);
agbindrec(e, "Agedgeinfo_t", sizeof(Agedgeinfo_t), true); // edge custom data
assert (delta <= 0xFFFF);
ED_minlen(e) = delta;
ED_weight(e) = 1;
}
if (e && agfindedge(g,p->np, nxp->np)) {
ED_weight(e) = 100;
}
}
}
for (p = (nitem *)dtflatten(list); p; p = (nitem *)dtlink(list, p)) {
n = p->cnode;
for (e = agfstout(cg,n); e; e = agnxtout(cg,e)) {
elist_append(e, ND_out(n));
elist_append(e, ND_in(aghead(e)));
}
}
/* We could remove redundant constraints here. However, the cost of doing
* this may be a good deal more than the time saved in network simplex.
* Also, if the graph is changed, the ND_in and ND_out data has to be
* updated.
*/
return cg;
}
static graph_t *mkConstraintG(Dt_t * list, intersectfn intersect, distfn dist) {
nitem *p;
nitem *nxt = NULL;
nitem *nxp;
graph_t *vg;
node_t *prev = NULL;
node_t *root = NULL;
node_t *n = NULL;
edge_t *e;
int lcnt, cnt;
int oldval = -INT_MAX;
node_t *lastn = NULL;
graph_t *cg = agopen("cg", Agstrictdirected, NULL);
agbindrec(cg, "Agraphinfo_t", sizeof(Agraphinfo_t), true); // graph custom data
/* count distinct nodes */
cnt = 0;
for (p = (nitem *)dtflatten(list); p; p = (nitem *)dtlink(list, p)) {
if (oldval != p->val) {
oldval = p->val;
cnt++;
}
}
/* construct basic chain to enforce left to right order */
oldval = -INT_MAX;
lcnt = 0;
for (p = (nitem *)dtflatten(list); p; p = (nitem *)dtlink(list, p)) {
if (oldval != p->val) {
oldval = p->val;
/* n = newNode (cg); */
n = agnode(cg, agnameof(p->np), 1); /* FIX */
agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true); //node custom data
ND_alg(n) = p;
if (root) {
ND_next(lastn) = n;
lastn = n;
} else {
root = n;
lastn = GD_nlist(cg) = n;
}
alloc_elist(lcnt, ND_in(n));
if (prev) {
if (prev == root)
alloc_elist(2 * (cnt - 1), ND_out(prev));
else
alloc_elist(cnt - lcnt - 1, ND_out(prev));
e = agedge(cg, prev, n, NULL, 1);
agbindrec(e, "Agedgeinfo_t", sizeof(Agedgeinfo_t), true); // edge custom data
ED_minlen(e) = SCALE;
ED_weight(e) = 1;
elist_append(e, ND_out(prev));
elist_append(e, ND_in(n));
}
lcnt++;
prev = n;
}
p->cnode = n;
}
alloc_elist(0, ND_out(prev));
/* add immediate right neighbor constraints
* Construct visibility graph, then perform transitive reduction.
* Remaining outedges are immediate right neighbors.
* FIX: Incremental algorithm to construct trans. reduction?
*/
vg = agopen("vg", Agstrictdirected, NULL);
for (p = (nitem *)dtflatten(list); p; p = (nitem *)dtlink(list, p)) {
n = agnode(vg, agnameof(p->np), 1); /* FIX */
agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true); //node custom data
p->vnode = n;
ND_alg(n) = p;
}
oldval = -INT_MAX;
for (p = (nitem *)dtflatten(list); p; p = (nitem *)dtlink(list, p)) {
if (oldval != p->val) { /* new pos: reset nxt */
oldval = p->val;
for (nxt = (nitem *)dtlink(link, p); nxt;
nxt = (nitem *)dtlink(list, nxt)) {
if (nxt->val != oldval)
break;
}
if (!nxt)
break;
}
for (nxp = nxt; nxp; nxp = (nitem *)dtlink(list, nxp)) {
if (intersect(p, nxp))
agedge(vg, p->vnode, nxp->vnode, NULL, 1);
}
}
/* Remove redundant constraints here. However, the cost of doing this
* may be a good deal more than the time saved in network simplex. Also,
* if the graph is changed, the ND_in and ND_out data has to be updated.
*/
mapGraphs(vg, cg, dist);
agclose(vg);
return cg;
}
static void closeGraph(graph_t * cg)
{
for (node_t *n = agfstnode(cg); n; n = agnxtnode(cg, n)) {
free_list(ND_in(n));
free_list(ND_out(n));
}
agclose(cg);
}
/* Create the X constrains and solve. We use a linear objective function
* (absolute values rather than squares), so we can reuse network simplex.
* The constraints are encoded as a dag with edges having a minimum length.
*/
static void constrainX(graph_t* g, nitem* nlist, int nnodes, intersectfn ifn,
int ortho)
{
Dt_t *list = dtopen(&constr, Dtobag);
nitem *p = nlist;
graph_t *cg;
int i;
for (i = 0; i < nnodes; i++) {
p->val = p->pos.x;
dtinsert(list, p);
p++;
}
if (ortho)
cg = mkConstraintG(list, ifn, distX);
else
cg = mkNConstraintG(g, list, ifn, distX);
rank(cg, 2, INT_MAX);
p = nlist;
for (i = 0; i < nnodes; i++) {
int newpos, oldpos, delta;
oldpos = p->pos.x;
newpos = ND_rank(p->cnode);
delta = newpos - oldpos;
p->pos.x = newpos;
p->bb.LL.x += delta;
p->bb.UR.x += delta;
p++;
}
closeGraph(cg);
dtclose(list);
}
/// see constrainX
static void constrainY(graph_t* g, nitem* nlist, int nnodes, intersectfn ifn,
int ortho)
{
Dt_t *list = dtopen(&constr, Dtobag);
nitem *p = nlist;
graph_t *cg;
int i;
for (i = 0; i < nnodes; i++) {
p->val = p->pos.y;
dtinsert(list, p);
p++;
}
if (ortho)
cg = mkConstraintG(list, ifn, distY);
else
cg = mkNConstraintG(g, list, ifn, distY);
rank(cg, 2, INT_MAX);
#ifdef DEBUG
{
Agsym_t *mlsym = agattr_text(cg, AGEDGE, "minlen", "");
Agsym_t *rksym = agattr_text(cg, AGNODE, "rank", "");
node_t *n;
edge_t *e;
for (n = agfstnode(cg); n; n = agnxtnode(cg, n)) {
agxset(n, rksym, ITOS(ND_rank(n)));
for (e = agfstedge(cg, n); e; e = agnxtedge(cg, e, n)) {
agxset(e, mlsym, ITOS(ED_minlen(e)));
}
}
}
#endif
p = nlist;
for (i = 0; i < nnodes; i++) {
int newpos, oldpos, delta;
oldpos = p->pos.y;
newpos = ND_rank(p->cnode);
delta = newpos - oldpos;
p->pos.y = newpos;
p->bb.LL.y += delta;
p->bb.UR.y += delta;
p++;
}
closeGraph(cg);
dtclose(list);
}
static int overlaps(nitem * p, int cnt)
{
int i, j;
nitem *pi = p;
nitem *pj;
for (i = 0; i < cnt - 1; i++) {
pj = pi + 1;
for (j = i + 1; j < cnt; j++) {
if (OVERLAP(pi->bb, pj->bb))
return 1;
pj++;
}
pi++;
}
return 0;
}
static void initItem(node_t * n, nitem * p, expand_t margin)
{
int x = POINTS(SCALE * ND_pos(n)[0]);
int y = POINTS(SCALE * ND_pos(n)[1]);
int w2, h2;
box b;
if (margin.doAdd) {
w2 = SCALE * (POINTS(ND_width(n)/2.0) + margin.x);
h2 = SCALE * (POINTS(ND_height(n)/2.0) + margin.y);
}
else {
w2 = POINTS(margin.x * SCALE2 * ND_width(n));
h2 = POINTS(margin.y * SCALE2 * ND_height(n));
}
b.LL.x = x - w2;
b.LL.y = y - h2;
b.UR.x = x + w2;
b.UR.y = y + h2;
p->pos.x = x;
p->pos.y = y;
p->np = n;
p->bb = b;
}
/* Use optimization to remove overlaps.
* Modifications;
* - do y;x then x;y and use the better one
* - for all overlaps (or if overlap with leftmost nodes), add a constraint;
* constraint could move both x and y away, or the smallest, or some
* mixture.
* - follow by a scale down using actual shapes
* We use an optimization based on Marriott, Stuckey, Tam and He,
* "Removing Node Overlapping in Graph Layout Using Constrained Optimization",
* Constraints,8(2):143--172, 2003.
* We solve 2 constraint problem, one in X, one in Y. In each dimension,
* we require relative positions to remain the same. That is, if two nodes
* have the same x originally, they have the same x at the end, and if one
* node is to the left of another, it remains to the left. In addition, if
* two nodes could overlap by moving their X coordinates, we insert a constraint
* to keep the two nodes sufficiently apart. Similarly, for Y.
*
* mode = AM_ORTHOXY => first X, then Y
* mode = AM_ORTHOYX => first Y, then X
* mode = AM_ORTHO => first X, then Y
* mode = AM_ORTHO_YX => first Y, then X
* In the last 2 cases, relax the constraints as follows: during the X pass,
* if two nodes actually intersect and a smaller move in the Y direction
* will remove the overlap, we don't force the nodes apart in the X direction,
* but leave it for the Y pass to remove any remaining overlaps. Without this,
* the X pass will remove all overlaps, and the Y pass only compresses in the
* Y direction, causing a skewing of the aspect ratio.
*/
int cAdjust(graph_t * g, int mode)
{
expand_t margin;
int ret, i, nnodes = agnnodes(g);
nitem *nlist = gv_calloc(nnodes, sizeof(nitem));
nitem *p = nlist;
node_t *n;
margin = sepFactor (g);
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
initItem(n, p, margin);
p++;
}
if (overlaps(nlist, nnodes)) {
point pt;
switch ((adjust_mode)mode) {
case AM_ORTHOXY:
constrainX(g, nlist, nnodes, intersectY, 1);
constrainY(g, nlist, nnodes, intersectX, 1);
break;
case AM_ORTHOYX:
constrainY(g, nlist, nnodes, intersectX, 1);
constrainX(g, nlist, nnodes, intersectY, 1);
break;
case AM_ORTHO :
constrainX(g, nlist, nnodes, intersectY0, 1);
constrainY(g, nlist, nnodes, intersectX, 1);
break;
case AM_ORTHO_YX :
constrainY(g, nlist, nnodes, intersectX0, 1);
constrainX(g, nlist, nnodes, intersectY, 1);
break;
case AM_PORTHOXY:
constrainX(g, nlist, nnodes, intersectY, 0);
constrainY(g, nlist, nnodes, intersectX, 0);
break;
case AM_PORTHOYX:
constrainY(g, nlist, nnodes, intersectX, 0);
constrainX(g, nlist, nnodes, intersectY, 0);
break;
case AM_PORTHO_YX :
constrainY(g, nlist, nnodes, intersectX0, 0);
constrainX(g, nlist, nnodes, intersectY, 0);
break;
case AM_PORTHO :
default :
constrainX(g, nlist, nnodes, intersectY0, 0);
constrainY(g, nlist, nnodes, intersectX, 0);
break;
}
p = nlist;
for (i = 0; i < nnodes; i++) {
n = p->np;
pt = p->pos;
ND_pos(n)[0] = PS2INCH(pt.x) / SCALE;
ND_pos(n)[1] = PS2INCH(pt.y) / SCALE;
p++;
}
ret = 1;
}
else ret = 0;
free(nlist);
return ret;
}
typedef struct {
pointf pos; /* position for sorting */
boxf bb;
double wd2;
double ht2;
node_t *np;
} info;
static int sortf(const void *x, const void *y) {
const pointf *p = x;
const pointf *q = y;
if (p->x < q->x)
return -1;
else if (p->x > q->x)
return 1;
else if (p->y < q->y)
return -1;
else if (p->y > q->y)
return 1;
else
return 0;
}
static double compress(info * nl, int nn)
{
info *p = nl;
info *q;
int i, j;
double s, sc = 0;
pointf pt;
for (i = 0; i < nn; i++) {
q = p + 1;
for (j = i + 1; j < nn; j++) {
if (OVERLAP(p->bb, q->bb))
return 0;
if (p->pos.x == q->pos.x)
pt.x = HUGE_VAL;
else {
pt.x = (p->wd2 + q->wd2) / fabs(p->pos.x - q->pos.x);
}
if (p->pos.y == q->pos.y)
pt.y = HUGE_VAL;
else {
pt.y = (p->ht2 + q->ht2) / fabs(p->pos.y - q->pos.y);
}
if (pt.y < pt.x)
s = pt.y;
else
s = pt.x;
if (s > sc)
sc = s;
q++;
}
p++;
}
return sc;
}
static pointf *mkOverlapSet(info *nl, size_t nn, size_t *cntp) {
info *p = nl;
info *q;
LIST(pointf) S = {0};
LIST_APPEND(&S, (pointf){0});
for (size_t i = 0; i < nn; i++) {
q = p + 1;
for (size_t j = i + 1; j < nn; j++) {
if (OVERLAP(p->bb, q->bb)) {
pointf pt;
if (p->pos.x == q->pos.x)
pt.x = HUGE_VAL;
else {
pt.x = (p->wd2 + q->wd2) / fabs(p->pos.x - q->pos.x);
if (pt.x < 1)
pt.x = 1;
}
if (p->pos.y == q->pos.y)
pt.y = HUGE_VAL;
else {
pt.y = (p->ht2 + q->ht2) / fabs(p->pos.y - q->pos.y);
if (pt.y < 1)
pt.y = 1;
}
LIST_APPEND(&S, pt);
}
q++;
}
p++;
}
LIST_SHRINK_TO_FIT(&S);
pointf *ret;
LIST_DETACH(&S, &ret, cntp);
return ret;
}
static pointf computeScaleXY(pointf *aarr, size_t m) {
double cost, bestcost;
pointf scale;
aarr[0].x = 1;
aarr[0].y = HUGE_VAL;
qsort(aarr + 1, m - 1, sizeof(pointf), sortf);
pointf *barr = gv_calloc(m, sizeof(pointf));
barr[m - 1].x = aarr[m - 1].x;
barr[m - 1].y = 1;
for (size_t k = m - 2; m > 1; k--) {
barr[k].x = aarr[k].x;
barr[k].y = fmax(aarr[k + 1].y, barr[k + 1].y);
if (k == 0) {
break;
}
}
size_t best = 0;
bestcost = HUGE_VAL;
for (size_t k = 0; k < m; k++) {
cost = barr[k].x * barr[k].y;
if (cost < bestcost) {
bestcost = cost;
best = k;
}
}
assert(bestcost < HUGE_VAL);
scale.x = barr[best].x;
scale.y = barr[best].y;
free(barr);
return scale;
}
/* For each (x,y) in aarr, scale has to be bigger than the smallest one.
* So, the scale is the max min.
*/
static double computeScale(pointf *aarr, size_t m) {
double sc = 0;
double v;
pointf p;
aarr++;
for (size_t i = 1; i < m; i++) {
p = *aarr++;
v = fmin(p.x, p.y);
if (v > sc)
sc = v;
}
return sc;
}
/* Scale the layout.
* equal > 0 => scale uniformly in x and y to remove overlaps
* equal = 0 => scale separately in x and y to remove overlaps
* equal < 0 => scale down uniformly in x and y to remove excess space
* The last assumes there are no overlaps at present.
* Based on Marriott, Stuckey, Tam and He,
* "Removing Node Overlapping in Graph Layout Using Constrained Optimization",
* Constraints,8(2):143--172, 2003.
*/
int scAdjust(graph_t * g, int equal)
{
int nnodes = agnnodes(g);
info *nlist = gv_calloc(nnodes, sizeof(info));
info *p = nlist;
node_t *n;
pointf s;
int i;
expand_t margin;
pointf *aarr;
margin = sepFactor (g);
if (margin.doAdd) {
/* we use inches below */
margin.x = PS2INCH(margin.x);
margin.y = PS2INCH(margin.y);
}
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
double w2, h2;
if (margin.doAdd) {
w2 = ND_width(n) / 2.0 + margin.x;
h2 = ND_height(n) / 2.0 + margin.y;
}
else {
w2 = margin.x * ND_width(n) / 2.0;
h2 = margin.y * ND_height(n) / 2.0;
}
p->pos.x = ND_pos(n)[0];
p->pos.y = ND_pos(n)[1];
p->bb.LL.x = p->pos.x - w2;
p->bb.LL.y = p->pos.y - h2;
p->bb.UR.x = p->pos.x + w2;
p->bb.UR.y = p->pos.y + h2;
p->wd2 = w2;
p->ht2 = h2;
p->np = n;
p++;
}
if (equal < 0) {
s.x = s.y = compress(nlist, nnodes);
if (s.x == 0) { /* overlaps exist */
free(nlist);
return 0;
}
if (Verbose) fprintf(stderr, "compress %g \n", s.x);
} else {
size_t m;
assert(nnodes >= 0);
aarr = mkOverlapSet(nlist, (size_t)nnodes, &m);
if (m == 1) { // no overlaps
free(aarr);
free(nlist);
return 0;
}
if (equal) {
s.x = s.y = computeScale(aarr, m);
} else {
s = computeScaleXY(aarr, m);
}
free(aarr);
if (Verbose) fprintf(stderr, "scale by %g,%g \n", s.x, s.y);
}
p = nlist;
for (i = 0; i < nnodes; i++) {
ND_pos(p->np)[0] = s.x * p->pos.x;
ND_pos(p->np)[1] = s.y * p->pos.y;
p++;
}
free(nlist);
return 1;
}
|