1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
/******************************************
Dijkstra algorithm
Computes single-source distances for
weighted graphs
******************************************/
#include <assert.h>
#include <float.h>
#include <neatogen/bfs.h>
#include <neatogen/dijkstra.h>
#include <limits.h>
#include <stdbool.h>
#include <stdlib.h>
#include <util/alloc.h>
#include <util/gv_math.h>
#include <util/bitarray.h>
typedef DistType Word;
#define MAX_DIST ((DistType)INT_MAX)
/* This heap class is suited to the Dijkstra alg.
data[i]=vertexNum <==> index[vertexNum]=i
*/
static int left(int i) { return 2 * i; }
static int right(int i) { return 2 * i + 1; }
static int parent(int i) { return i / 2; }
typedef struct {
int *data;
int heapSize;
int *index;
} heap;
static bool insideHeap(const heap *h, int i) { return i < h->heapSize; }
static bool greaterPriority(const heap *h, int i, int j, const Word *dist) {
return dist[h->data[i]] < dist[h->data[j]];
}
static bool greaterPriority_f(const heap *h, int i, int j, const float *dist) {
return dist[h->data[i]] < dist[h->data[j]];
}
static void assign(heap *h, int i, int j) {
h->data[i] = h->data[j];
h->index[h->data[i]] = i;
}
static void exchange(heap *h, int i, int j) {
SWAP(&h->data[i], &h->data[j]);
h->index[h->data[i]] = i;
h->index[h->data[j]] = j;
}
static void heapify(heap *h, int i, Word dist[]) {
int l, r, largest;
while (1) {
l = left(i);
r = right(i);
if (insideHeap(h, l) && greaterPriority(h, l, i, dist))
largest = l;
else
largest = i;
if (insideHeap(h, r) && greaterPriority(h, r, largest, dist))
largest = r;
if (largest == i)
break;
exchange(h, largest, i);
i = largest;
}
}
static void freeHeap(heap * h)
{
free(h->index);
free(h->data);
}
static heap initHeap(int startVertex, Word dist[], int n) {
int i, count;
int j; /* We cannot use an unsigned value in this loop */
heap h = {
.data = gv_calloc(n - 1, sizeof(int)),
.heapSize = n - 1,
.index = gv_calloc(n, sizeof(int))
};
for (count = 0, i = 0; i < n; i++)
if (i != startVertex) {
h.data[count] = i;
h.index[i] = count;
count++;
}
for (j = (n - 1) / 2; j >= 0; j--)
heapify(&h, j, dist);
return h;
}
static bool extractMax(heap *h, int *max, Word dist[]) {
if (h->heapSize == 0)
return false;
*max = h->data[0];
h->data[0] = h->data[h->heapSize - 1];
h->index[h->data[0]] = 0;
h->heapSize--;
heapify(h, 0, dist);
return true;
}
static void increaseKey(heap *h, int increasedVertex, Word newDist, Word dist[]) {
int placeInHeap;
int i;
if (dist[increasedVertex] <= newDist)
return;
placeInHeap = h->index[increasedVertex];
dist[increasedVertex] = newDist;
i = placeInHeap;
while (i > 0 && dist[h->data[parent(i)]] > newDist) { /* can write here: greaterPriority(i,parent(i),dist) */
assign(h, i, parent(i));
i = parent(i);
}
h->data[i] = increasedVertex;
h->index[increasedVertex] = i;
}
void ngdijkstra(int vertex, vtx_data * graph, int n, DistType * dist)
{
int closestVertex, neighbor;
DistType closestDist, prevClosestDist = MAX_DIST;
/* initial distances with edge weights: */
for (int i = 0; i < n; i++)
dist[i] = MAX_DIST;
dist[vertex] = 0;
for (size_t i = 1; i < graph[vertex].nedges; i++)
dist[graph[vertex].edges[i]] = (DistType) graph[vertex].ewgts[i];
heap H = initHeap(vertex, dist, n);
while (extractMax(&H, &closestVertex, dist)) {
closestDist = dist[closestVertex];
if (closestDist == MAX_DIST)
break;
for (size_t i = 1; i < graph[closestVertex].nedges; i++) {
neighbor = graph[closestVertex].edges[i];
increaseKey(&H, neighbor, closestDist +
(DistType)graph[closestVertex].ewgts[i], dist);
}
prevClosestDist = closestDist;
}
/* For dealing with disconnected graphs: */
for (int i = 0; i < n; i++)
if (dist[i] == MAX_DIST) /* 'i' is not connected to 'vertex' */
dist[i] = prevClosestDist + 10;
freeHeap(&H);
}
static void heapify_f(heap *h, int i, float dist[]) {
int l, r, largest;
while (1) {
l = left(i);
r = right(i);
if (insideHeap(h, l) && greaterPriority_f(h, l, i, dist))
largest = l;
else
largest = i;
if (insideHeap(h, r) && greaterPriority_f(h, r, largest, dist))
largest = r;
if (largest == i)
break;
exchange(h, largest, i);
i = largest;
}
}
static heap initHeap_f(int startVertex, float dist[], int n) {
int i, count;
int j; /* We cannot use an unsigned value in this loop */
heap h = {
.data = gv_calloc(n - 1, sizeof(int)),
.heapSize = n - 1,
.index = gv_calloc(n, sizeof(int))
};
for (count = 0, i = 0; i < n; i++)
if (i != startVertex) {
h.data[count] = i;
h.index[i] = count;
count++;
}
for (j = (n - 1) / 2; j >= 0; j--)
heapify_f(&h, j, dist);
return h;
}
static bool extractMax_f(heap *h, int *max, float dist[]) {
if (h->heapSize == 0)
return false;
*max = h->data[0];
h->data[0] = h->data[h->heapSize - 1];
h->index[h->data[0]] = 0;
h->heapSize--;
heapify_f(h, 0, dist);
return true;
}
static void increaseKey_f(heap *h, int increasedVertex, float newDist,
float dist[]) {
int placeInHeap;
int i;
if (dist[increasedVertex] <= newDist)
return;
placeInHeap = h->index[increasedVertex];
dist[increasedVertex] = newDist;
i = placeInHeap;
while (i > 0 && dist[h->data[parent(i)]] > newDist) { /* can write here: greaterPriority(i,parent(i),dist) */
assign(h, i, parent(i));
i = parent(i);
}
h->data[i] = increasedVertex;
h->index[increasedVertex] = i;
}
/* Weighted shortest paths from vertex.
* Assume graph is connected.
*/
void dijkstra_f(int vertex, vtx_data * graph, int n, float *dist)
{
int closestVertex = 0, neighbor;
float closestDist;
/* initial distances with edge weights: */
for (int i = 0; i < n; i++)
dist[i] = FLT_MAX;
dist[vertex] = 0;
for (size_t i = 1; i < graph[vertex].nedges; i++)
dist[graph[vertex].edges[i]] = graph[vertex].ewgts[i];
heap H = initHeap_f(vertex, dist, n);
while (extractMax_f(&H, &closestVertex, dist)) {
closestDist = dist[closestVertex];
if (closestDist == FLT_MAX)
break;
for (size_t i = 1; i < graph[closestVertex].nedges; i++) {
neighbor = graph[closestVertex].edges[i];
increaseKey_f(&H, neighbor, closestDist + graph[closestVertex].ewgts[i],
dist);
}
}
freeHeap(&H);
}
// single source shortest paths that also builds terms as it goes
// mostly copied from dijkstra_f above
// returns the number of terms built
int dijkstra_sgd(graph_sgd *graph, int source, term_sgd *terms) {
float *dists = gv_calloc(graph->n, sizeof(float));
for (size_t i= 0; i < graph->n; i++) {
dists[i] = FLT_MAX;
}
dists[source] = 0;
for (size_t i = graph->sources[source]; i < graph->sources[source + 1];
i++) {
size_t target = graph->targets[i];
dists[target] = graph->weights[i];
}
assert(graph->n <= INT_MAX);
heap h = initHeap_f(source, dists, (int)graph->n);
int closest = 0, offset = 0;
while (extractMax_f(&h, &closest, dists)) {
float d = dists[closest];
if (d == FLT_MAX) {
break;
}
// if the target is fixed then always create a term as shortest paths are not calculated from there
// if not fixed then only create a term if the target index is lower
if (bitarray_get(graph->pinneds, closest) || closest<source) {
terms[offset].i = source;
terms[offset].j = closest;
terms[offset].d = d;
terms[offset].w = 1 / (d*d);
offset++;
}
for (size_t i = graph->sources[closest]; i < graph->sources[closest + 1];
i++) {
size_t target = graph->targets[i];
float weight = graph->weights[i];
assert(target <= INT_MAX);
increaseKey_f(&h, (int)target, d+weight, dists);
}
}
freeHeap(&h);
free(dists);
return offset;
}
|