1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <neatogen/bfs.h>
#include <neatogen/dijkstra.h>
#include <neatogen/kkutils.h>
#include <stdlib.h>
#include <math.h>
#include <util/alloc.h>
#include <util/sort.h>
size_t common_neighbors(vtx_data *graph, int u, int *v_vector) {
// count number of common neighbors of 'v_vector' and 'u'
int neighbor;
size_t num_shared_neighbors = 0;
for (size_t j = 1; j < graph[u].nedges; j++) {
neighbor = graph[u].edges[j];
if (v_vector[neighbor] > 0) {
// a shared neighbor
num_shared_neighbors++;
}
}
return num_shared_neighbors;
}
void fill_neighbors_vec_unweighted(vtx_data * graph, int vtx, int *vtx_vec)
{
/* a node is NOT a neighbor of itself! */
/* unlike the other version of this function */
for (size_t j = 1; j < graph[vtx].nedges; j++) {
vtx_vec[graph[vtx].edges[j]] = 1;
}
}
void empty_neighbors_vec(vtx_data * graph, int vtx, int *vtx_vec)
{
/* a node is NOT a neighbor of itself! */
/* unlike the other version of this function */
for (size_t j = 1; j < graph[vtx].nedges; j++) {
vtx_vec[graph[vtx].edges[j]] = 0;
}
}
/// assumes the graph has weights
static DistType **compute_apsp_dijkstra(vtx_data * graph, int n)
{
int i;
DistType *storage = gv_calloc((size_t)(n * n), sizeof(DistType));
DistType **dij = gv_calloc(n, sizeof(DistType*));
for (i = 0; i < n; i++)
dij[i] = storage + i * n;
for (i = 0; i < n; i++) {
ngdijkstra(i, graph, n, dij[i]);
}
return dij;
}
static DistType **compute_apsp_simple(vtx_data * graph, int n)
{
/* compute all pairs shortest path */
/* for unweighted graph */
int i;
DistType *storage = gv_calloc((size_t)(n * n), sizeof(DistType));
DistType **dij = gv_calloc(n, sizeof(DistType*));
for (i = 0; i < n; i++) {
dij[i] = storage + i * n;
}
for (i = 0; i < n; i++) {
bfs(i, graph, n, dij[i]);
}
return dij;
}
DistType **compute_apsp(vtx_data * graph, int n)
{
if (graph->ewgts)
return compute_apsp_dijkstra(graph, n);
else
return compute_apsp_simple(graph, n);
}
DistType **compute_apsp_artificial_weights(vtx_data *graph, int n) {
DistType **Dij;
/* compute all-pairs-shortest-path-length while weighting the graph */
/* so high-degree nodes are distantly located */
float *old_weights = graph[0].ewgts;
compute_new_weights(graph, n);
Dij = compute_apsp_dijkstra(graph, n);
restore_old_weights(graph, n, old_weights);
return Dij;
}
/**********************/
/* */
/* Quick Sort */
/* */
/**********************/
double distance_kD(double **coords, int dim, int i, int j)
{
/* compute a k-D Euclidean distance between 'coords[*][i]' and 'coords[*][j]' */
double sum = 0;
int k;
for (k = 0; k < dim; k++) {
sum +=
(coords[k][i] - coords[k][j]) * (coords[k][i] - coords[k][j]);
}
return sqrt(sum);
}
static int fcmpf(const void *a, const void *b, void *context) {
const int *ip1 = a;
const int *ip2 = b;
float *fvals = context;
float d1 = fvals[*ip1];
float d2 = fvals[*ip2];
if (d1 < d2) {
return -1;
}
if (d1 > d2) {
return 1;
}
return 0;
}
void quicksort_placef(float *place, int *ordering, int first, int last)
{
if (first < last) {
gv_sort(ordering + first, last - first + 1, sizeof(ordering[0]), fcmpf, place);
}
}
static int cmp(const void *a, const void *b, void *context) {
const int *x = a;
const int *y = b;
const double *place = context;
if (place[*x] < place[*y]) {
return -1;
}
if (place[*x] > place[*y]) {
return 1;
}
return 0;
}
void quicksort_place(double *place, int *ordering, int size) {
gv_sort(ordering, size, sizeof(ordering[0]), cmp, place);
}
void compute_new_weights(vtx_data * graph, int n)
{
/* Reweight graph so that high degree nodes will be separated */
int i;
size_t nedges = 0;
int *vtx_vec = gv_calloc(n, sizeof(int));
size_t deg_i, deg_j;
int neighbor;
for (i = 0; i < n; i++) {
nedges += graph[i].nedges;
}
float *weights = gv_calloc(nedges, sizeof(float));
for (i = 0; i < n; i++) {
graph[i].ewgts = weights;
fill_neighbors_vec_unweighted(graph, i, vtx_vec);
deg_i = graph[i].nedges - 1;
for (size_t j = 1; j <= deg_i; j++) {
neighbor = graph[i].edges[j];
deg_j = graph[neighbor].nedges - 1;
weights[j] =
(float)(deg_i + deg_j - 2 * common_neighbors(graph, neighbor, vtx_vec));
}
empty_neighbors_vec(graph, i, vtx_vec);
weights += graph[i].nedges;
}
free(vtx_vec);
}
void restore_old_weights(vtx_data * graph, int n, float *old_weights)
{
int i;
free(graph[0].ewgts);
graph[0].ewgts = NULL;
if (old_weights != NULL) {
for (i = 0; i < n; i++) {
graph[i].ewgts = old_weights;
old_weights += graph[i].nedges;
}
}
}
|