File: legal.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (405 lines) | stat: -rw-r--r-- 9,955 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <assert.h>
#include <float.h>
#include <math.h>
#include <limits.h>
#include <neatogen/neato.h>
#include <pathplan/pathutil.h>
#include <stdbool.h>
#include <stddef.h>
#include <util/alloc.h>
#include <util/exit.h>
#include <util/list.h>

#define SLOPE(p,q) ( ( ( p.y ) - ( q.y ) ) / ( ( p.x ) - ( q.x ) ) )

#define EQ_PT(v,w) (((v).x == (w).x) && ((v).y == (w).y))

#define after(v) (((v)==((v)->poly->finish))?((v)->poly->start):((v)+1))
#define prior(v) (((v)==((v)->poly->start))?((v)->poly->finish):((v)-1))

typedef struct polygon polygon;

    typedef struct vertex {
	pointf pos;
	polygon *poly;
	struct vertex *active;
    } vertex ;

    struct polygon {
	vertex *start, *finish;
	boxf bb;
    };

static int sign(double v) {
  if (v < 0)
    return -1;
  if (v > 0)
    return 1;
  return 0;
}

/* find the sign of the area of each of the triangles
    formed by adding a vertex of m to l  
    also find the sign of their product  */
static void sgnarea(vertex *l, vertex *m, int i[])
{
    double a, b, c, d, e, f, g, h, t;
    a = l->pos.x;
    b = l->pos.y;
    c = after(l)->pos.x - a;
    d = after(l)->pos.y - b;
    e = m->pos.x - a;
    f = m->pos.y - b;
    g = after(m)->pos.x - a;
    h = after(m)->pos.y - b;
    t = c * f - d * e;
    i[0] = sign(t);
    t = c * h - d * g;
    i[1] = sign(t);
    i[2] = i[0] * i[1];
}

/** where is `g` relative to the interval delimited by `f` and `h`?
 *
 * The order of `f` and `h` is not assumed. That is, the interval defined may be
 * `(f, h)` or `(h, f)` depending on whether `f` is less than or greater than
 * `h`.
 *
 * \param f First boundary of the interval
 * \param g Value to test
 * \param h Second boundary of the interval
 * \return -1 if g is not in the interval, 1 if g is in the interval, 0 if g is
 *   on the boundary (that is, equal to f or equal to h)
 */
static int between(double f, double g, double h) {
  if (f < g) {
    if (g < h) {
      return 1;
    }
    if (g > h) {
      return -1;
    }
    return 0;
  }
  if (f > g) {
    if (g > h) {
      return 1;
    }
    if (g < h) {
      return -1;
    }
    return 0;
  }
  return 0;
}

/* determine if vertex i of line m is on line l     */
static int online(vertex *l, vertex *m, int i)
{
    pointf a, b, c;
    a = l->pos;
    b = after(l)->pos;
    c = i == 0 ? m->pos : after(m)->pos;
    return a.x == b.x
      ? (a.x == c.x && -1 != between(a.y, c.y, b.y))
      : between(a.x, c.x, b.x);
}

/* determine point of detected intersections  */
static int intpoint(vertex *l, vertex *m, double *x, double *y, int cond)
{
    pointf ls, le, ms, me, pt1, pt2;
    double m1, m2, c1, c2;

    if (cond <= 0)
	return 0;
    ls = l->pos;
    le = after(l)->pos;
    ms = m->pos;
    me = after(m)->pos;

    switch (cond) {

    case 3:			/* a simple intersection        */
	if (ls.x == le.x) {
	    *x = ls.x;
	    *y = me.y + SLOPE(ms, me) * (*x - me.x);
	} else if (ms.x == me.x) {
	    *x = ms.x;
	    *y = le.y + SLOPE(ls, le) * (*x - le.x);
	} else {
	    m1 = SLOPE(ms, me);
	    m2 = SLOPE(ls, le);
	    c1 = ms.y - m1 * ms.x;
	    c2 = ls.y - m2 * ls.x;
	    *x = (c2 - c1) / (m1 - m2);
	    *y = (m1 * c2 - c1 * m2) / (m1 - m2);
	}
	break;

    case 2:			/*     the two lines  have a common segment  */
	if (online(l, m, 0) == -1) {	/* ms between ls and le */
	    pt1 = ms;
	    pt2 = online(m, l, 1) == -1
	      ? (online(m, l, 0) == -1 ? le : ls) : me;
	} else if (online(l, m, 1) == -1) {	/* me between ls and le */
	    pt1 = me;
	    pt2 = online(l, m, 0) == -1
	      ? (online(m, l, 0) == -1 ? le : ls) : ms;
	} else {
	    /* may be degenerate? */
	    if (online(m, l, 0) != -1)
		return 0;
	    pt1 = ls;
	    pt2 = le;
	}

	*x = (pt1.x + pt2.x) / 2;
	*y = (pt1.y + pt2.y) / 2;
	break;

    case 1:			/* a vertex of line m is on line l */
	if ((ls.x - le.x) * (ms.y - ls.y) == (ls.y - le.y) * (ms.x - ls.x)) {
	    *x = ms.x;
	    *y = ms.y;
	} else {
	    *x = me.x;
	    *y = me.y;
	}
    }				/* end switch  */
    return 1;
}

static void
putSeg (int i, vertex* v)
{
    fprintf(stderr, "seg#%d : (%.3f, %.3f) (%.3f, %.3f)\n",
	i, v->pos.x, v->pos.y, after(v)->pos.x, after(v)->pos.y);
}

/// return true if a real intersection has been found
static bool realIntersect(vertex *firstv, vertex *secondv, pointf p) {
    const pointf vft = firstv->pos;
    const pointf avft = after(firstv)->pos;
    const pointf vsd = secondv->pos;
    const pointf avsd = after(secondv)->pos;

    if ((vft.x != avft.x && vsd.x != avsd.x) ||
	(vft.x == avft.x && !EQ_PT(vft, p) && !EQ_PT(avft, p)) ||
	(vsd.x == avsd.x && !EQ_PT(vsd, p) && !EQ_PT(avsd, p))) 
    {
	if (Verbose > 1) {
		fprintf(stderr, "\nintersection at %.3f %.3f\n",
			p.x, p.y);
		putSeg (1, firstv);
		putSeg (2, secondv);
	}
	return true;
    }
    return false;
}

/* detect whether segments l and m intersect      
 * Return true if found; false otherwise;
 */
static bool find_intersection(vertex *l, vertex *m) {
    double x, y;
	int i[3];
    sgnarea(l, m, i);

    if (i[2] > 0)
	return false;

    if (i[2] < 0) {
	sgnarea(m, l, i);
	if (i[2] > 0)
	    return false;
	if (!intpoint(l, m, &x, &y, i[2] < 0 ? 3 : online(m, l, abs(i[0]))))
	    return false;
    }

    else if (!intpoint(l, m, &x, &y, i[0] == i[1] ?
		       2 * MAX(online(l, m, 0),
			       online(l, m, 1)) : online(l, m, abs(i[0]))))
	return false;

    return realIntersect(l, m, (pointf){.x = x, .y = y});
}

static int gt(const void *a, const void *b) {
    const vertex *const *i = a;
    const vertex *const *j = b;
    if ((*i)->pos.x > (*j)->pos.x) {
      return 1;
    }
    if ((*i)->pos.x < (*j)->pos.x) {
      return -1;
    }
    if ((*i)->pos.y > (*j)->pos.y) {
      return 1;
    }
    if ((*i)->pos.y < (*j)->pos.y) {
      return -1;
    }
    return 0;
}

/* Check for pairwise intersection of polygon sides
 * Return 1 if intersection found, 0 for not found, -1 for error.
 */
static int find_ints(vertex vertex_list[], size_t nvertices) {
    int found = 0;
    LIST(vertex *) all = {0};
    vertex *tempa;

    vertex **pvertex = gv_calloc(nvertices, sizeof(vertex*));

    for (size_t i = 0; i < nvertices; i++)
	pvertex[i] = vertex_list + i;

/* sort vertices by x coordinate	*/
    qsort(pvertex, nvertices, sizeof(vertex *), gt);

/* walk through the vertices in order of increasing x coordinate	*/
    for (size_t i = 0; i < nvertices; i++) {
	vertex *const pt1 = pvertex[i];
	vertex *pt2 = prior(pvertex[i]);
	vertex *templ = pt2;
	for (int k = 0; k < 2; k++) { // each vertex has 2 edges
	    switch (gt(&pt1, &pt2)) {

	    case -1:		/* forward edge, test and insert      */

                 /* test */
		for (size_t j = 0; j < LIST_SIZE(&all); ++j) {
		    tempa = LIST_GET(&all, j);
		    found = find_intersection(tempa, templ);
		    if (found)
			goto finish;
		}

		LIST_APPEND(&all, templ);
		templ->active = templ;
		break;

	    case 1:		/* backward edge, delete        */

		if ((tempa = templ->active) == 0) {
		    agerrorf("trying to delete a non-line\n");
		    return -1;
		}
		LIST_REMOVE(&all, tempa);
		templ->active = 0;
		break;

	    default:
		break; // same point; do nothing

	    }

	    pt2 = after(pvertex[i]);
	    templ = pvertex[i];	/*second neighbor */
	}
    }

finish :
    LIST_FREE(&all);
    free (pvertex);
    return found;
}

#define INBOX(p,bb) ((p.x <= bb.UR.x) && (p.x >= bb.LL.x) && (p.y <= bb.UR.y) && (p.y >= bb.LL.y))
#define NESTED(a,b) (INBOX(a.LL,b) && INBOX(a.UR,b))

/* Check if one polygon is inside another. We know that each
 * pair is either disjoint or one is inside the other.
 * Return 1 if an intersection is found, 0 otherwise.
 */
static int
findInside(Ppoly_t ** polys, int n_polys, polygon* polygon_list)
{
    int i, j;
    pointf pt;
    Ppoly_t* p1;
    Ppoly_t* p2;

    for (i = 0; i < n_polys; i++) {
	p1 = polys[i];
        pt = p1->ps[0];
	for (j = i+1; j < n_polys; j++) {
	    p2 = polys[j];
	    if (NESTED(polygon_list[i].bb,polygon_list[j].bb)) {
		if (in_poly(*p2, pt)) return 1;
	    }
	    else if (NESTED(polygon_list[j].bb,polygon_list[i].bb)) {
		if (in_poly(*p1, p2->ps[0])) return 1;
	    }
	}
    }
    return 0;
}

/* Check that none of the polygons overlap.
 * Return 1 if okay; 0 otherwise.
 */
int Plegal_arrangement(Ppoly_t ** polys, int n_polys)
{
    int i, vno, found;
    boxf bb;
    double x, y;

    polygon *polygon_list = gv_calloc(n_polys, sizeof(polygon));

    size_t nverts;
    for (nverts = 0, i = 0; i < n_polys; i++) {
	nverts += polys[i]->pn;
    }

    vertex *vertex_list = gv_calloc(nverts, sizeof(vertex));

    for (i = vno = 0; i < n_polys; i++) {
	polygon_list[i].start = &vertex_list[vno];
	bb.LL.x = bb.LL.y = DBL_MAX;
	bb.UR.x = bb.UR.y = -DBL_MAX;
	for (size_t j = 0; j < polys[i]->pn; j++) {
	    x = polys[i]->ps[j].x;
	    y = polys[i]->ps[j].y;
	    bb.LL.x = fmin(bb.LL.x,x);
	    bb.LL.y = fmin(bb.LL.y,y);
	    bb.UR.x = fmax(bb.UR.x,x);
	    bb.UR.y = fmax(bb.UR.y,y);
	    vertex_list[vno].pos.x = x;
	    vertex_list[vno].pos.y = y;
	    vertex_list[vno].poly = &polygon_list[i];
	    vertex_list[vno].active = 0;
	    vno++;
	}
	polygon_list[i].finish = &vertex_list[vno - 1];
	polygon_list[i].bb = bb;
    }

    found = find_ints(vertex_list, nverts);
    if (found < 0) {
	free(polygon_list);
	free(vertex_list);
	return 0;
    }

    if (!found) {
	found = findInside(polys, n_polys, polygon_list);
    }
    free(polygon_list);
    free(vertex_list);

    return !found;
}