File: matinv.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (66 lines) | stat: -rw-r--r-- 1,981 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

/*
 * This code was (mostly) written by Ken Turkowski, who said:
 *
 * Oh, that. I wrote it in college the first time. It's open source - I think I
 * posted it after seeing so many people solve equations by inverting matrices
 * by computing minors naïvely.
 * -Ken
 *
 * The views represented here are mine and are not necessarily shared by
 * my employer.
   	Ken Turkowski			turk@apple.com
	Immersive Media Technologist 	http://www.worldserver.com/turk/
	Apple Computer, Inc.
	1 Infinite Loop, MS 302-3VR
	Cupertino, CA 95014
 */

/* Matinv() inverts the matrix A using LU decomposition.  Arguments:
 *	A    - the (n x n) matrix to be inverted
 *	Ainv - the (n x n) inverted matrix
 *	n    - the order of the matrices A and Ainv
 */

#include <stdlib.h>
#include <common/render.h>
#include <neatogen/neato.h>
#include <util/alloc.h>
#include <util/gv_math.h>

int matinv(double **A, double **Ainv, int n)
{
    int i, j;

    /* Decompose matrix into L and U triangular matrices */
    if (lu_decompose(A, n) == 0)
	return (0);		/* Singular */

    /* Invert matrix by solving n simultaneous equations n times */
    double *b = gv_calloc(n, sizeof(double));
    for (i = 0; i < n; i++) {
	for (j = 0; j < n; j++)
	    b[j] = 0.0;
	b[i] = 1.0;
	lu_solve(Ainv[i], b, n);	/* Into a row of Ainv: fix later */
    }
    free(b);

    /* Transpose matrix */
    for (i = 0; i < n; i++) {
	for (j = 0; j < i; j++) {
	    SWAP(&Ainv[i][j], &Ainv[j][i]);
	}
    }

    return (1);
}