1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <neatogen/multispline.h>
#include <neatogen/delaunay.h>
#include <neatogen/neatoprocs.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <util/alloc.h>
#include <util/gv_math.h>
static bool spline_merge(node_t * n)
{
(void)n;
return false;
}
static bool swap_ends_p(edge_t * e)
{
(void)e;
return false;
}
static splineInfo sinfo = {.swapEnds = swap_ends_p,
.splineMerge = spline_merge};
typedef struct {
int i, j;
} ipair;
typedef struct _tri {
ipair v;
struct _tri *nxttri;
} tri;
typedef struct {
Ppoly_t poly; /* base polygon used for routing an edge */
tri **triMap; /* triMap[j] is list of all opposite sides of
triangles containing vertex j, represented
as the indices of the two points in poly */
} tripoly_t;
/*
* Support for map from I x I -> I
*/
typedef struct {
Dtlink_t link; /* cdt data */
int a[2]; /* key */
int t;
} item;
static int cmpItem(void *item1, void *item2) {
const int *p1 = item1;
const int *p2 = item2;
if (p1[0] < p2[0]) return -1;
if (p1[0] > p2[0]) return 1;
if (p1[1] < p2[1]) return -1;
if (p1[1] > p2[1]) return 1;
return 0;
}
static void *newItem(void *p, Dtdisc_t *disc) {
item *objp = p;
item *newp = gv_alloc(sizeof(item));
(void)disc;
newp->a[0] = objp->a[0];
newp->a[1] = objp->a[1];
newp->t = objp->t;
return newp;
}
static Dtdisc_t itemdisc = {
.key = offsetof(item, a),
.size = 2 * sizeof(int),
.link = offsetof(item, link),
.makef = newItem,
.freef = free,
.comparf = cmpItem,
};
static void addMap(Dt_t * map, int a, int b, int t)
{
item it;
if (a > b) {
SWAP(&a, &b);
}
it.a[0] = a;
it.a[1] = b;
it.t = t;
dtinsert(map, &it);
}
/* Create mapping from indices of side endpoints to triangle id
* We use a set rather than a bag because the segments used for lookup
* will always be a side of a polygon and hence have a unique triangle.
*/
static Dt_t *mapSegToTri(surface_t * sf)
{
Dt_t *map = dtopen(&itemdisc, Dtoset);
int i, a, b, c;
int *ps = sf->faces;
for (i = 0; i < sf->nfaces; i++) {
a = *ps++;
b = *ps++;
c = *ps++;
addMap(map, a, b, i);
addMap(map, b, c, i);
addMap(map, c, a, i);
}
return map;
}
static int findMap(Dt_t * map, int a, int b)
{
item it;
item *ip;
if (a > b) {
SWAP(&a, &b);
}
it.a[0] = a;
it.a[1] = b;
ip = dtsearch(map, &it);
assert(ip);
return ip->t;
}
/*
* Support for map from I -> I
*/
typedef struct {
Dtlink_t link; /* cdt data */
int i; /* key */
int j;
} Ipair;
static int cmpIpair(void *pair1, void *pair2) {
const int *p1 = pair1;
const int *p2 = pair2;
if (*p1 < *p2) {
return -1;
}
if (*p1 > *p2) {
return 1;
}
return 0;
}
static void *newIpair(void *p, Dtdisc_t *disc) {
Ipair *objp = p;
Ipair *newp = gv_alloc(sizeof(Ipair));
(void)disc;
newp->i = objp->i;
newp->j = objp->j;
return newp;
}
static Dtdisc_t ipairdisc = {
.key = offsetof(Ipair, i),
.size = sizeof(int),
.link = offsetof(Ipair, link),
.makef = newIpair,
.freef = free,
.comparf = cmpIpair,
};
static void vmapAdd(Dt_t * map, int i, int j)
{
Ipair obj;
obj.i = i;
obj.j = j;
dtinsert(map, &obj);
}
static int vMap(Dt_t * map, int i)
{
Ipair *ip;
ip = dtmatch(map, &i);
return ip->j;
}
/// map vertex indices from router_t to tripoly_t coordinates
static void mapTri(Dt_t * map, tri * tp)
{
for (; tp; tp = tp->nxttri) {
tp->v.i = vMap(map, tp->v.i);
tp->v.j = vMap(map, tp->v.j);
}
}
static tri *
addTri(int i, int j, tri * oldp)
{
tri *tp = gv_alloc(sizeof(tri));
tp->v.i = i;
tp->v.j = j;
tp->nxttri = oldp;
return tp;
}
/// return the angle bisecting the angle pp--cp--np
static double bisect(pointf pp, pointf cp, pointf np)
{
double theta, phi;
theta = atan2(np.y - cp.y, np.x - cp.x);
phi = atan2(pp.y - cp.y, pp.x - cp.x);
return (theta + phi) / 2.0;
}
/// check if ray v->w intersects segment a--b
static int raySeg(pointf v, pointf w, pointf a, pointf b)
{
int wa = wind(v, w, a);
int wb = wind(v, w, b);
if (wa == wb)
return 0;
if (wa == 0) {
return wind(v, b, w) * wind(v, b, a) >= 0;
} else {
return wind(v, a, w) * wind(v, a, b) >= 0;
}
}
/* Find the point p where ray v->w intersects segment ai-bi, if any.
* Return 1 on success, 0 on failure
*/
static int
raySegIntersect(pointf v, pointf w, pointf a, pointf b, pointf * p)
{
if (raySeg(v, w, a, b))
return line_intersect(v, w, a, b, p);
else
return 0;
}
/* Given the triangle vertex v, and point w so that v->w points
* into the polygon, return where the ray v->w intersects the
* polygon. The search uses all of the opposite sides of triangles
* with v as vertex.
* Return 0 on success; 1 on failure.
*/
static int
triPoint(tripoly_t * trip, int vx, pointf v, pointf w, pointf * ip)
{
tri *tp;
for (tp = trip->triMap[vx]; tp; tp = tp->nxttri) {
if (raySegIntersect
(v, w, trip->poly.ps[tp->v.i], trip->poly.ps[tp->v.j], ip))
return 0;
}
return 1;
}
/* Find the index of v in the points polys->ps.
* We start at 1 since the point corresponding to 0
* will never be used as v.
*/
static int ctrlPtIdx(pointf v, Ppoly_t * polys)
{
pointf w;
for (size_t i = 1; i < polys->pn; i++) {
w = polys->ps[i];
if (w.x == v.x && w.y == v.y) {
assert(i <= INT_MAX);
return (int)i;
}
}
return -1;
}
#define SEP 15
/* Generate mult points associated with v.
* The points will lie on the ray bisecting the angle prev--v--nxt.
* The first point will always be v.
* The rest are positioned equally spaced with maximum spacing SEP.
* In addition, they all lie within the polygon trip->poly.
* Parameter s gives the index after which a vertex lies on the
* opposite side. This is necessary to get the "curvature" of the
* path correct.
*/
static pointf *mkCtrlPts(int s, int mult, pointf prev, pointf v,
pointf nxt, tripoly_t * trip)
{
int idx = ctrlPtIdx(v, &trip->poly);
int i;
double d, sep, theta, sinTheta, cosTheta;
pointf q, w;
if (idx < 0)
return NULL;
pointf *ps = gv_calloc(mult, sizeof(pointf));
theta = bisect(prev, v, nxt);
sinTheta = sin(theta);
cosTheta = cos(theta);
w.x = v.x + 100 * cosTheta;
w.y = v.y + 100 * sinTheta;
if (idx > s) {
if (wind(prev, v, w) != 1) {
sinTheta *= -1;
cosTheta *= -1;
w.x = v.x + 100 * cosTheta;
w.y = v.y + 100 * sinTheta;
}
} else if (wind(prev, v, w) != -1) {
sinTheta *= -1;
cosTheta *= -1;
w.x = v.x + 100 * cosTheta;
w.y = v.y + 100 * sinTheta;
}
if (triPoint(trip, idx, v, w, &q)) {
free(ps);
return 0;
}
d = DIST(q, v);
if (d >= mult * SEP)
sep = SEP;
else
sep = d / mult;
if (idx < s) {
for (i = 0; i < mult; i++) {
ps[i].x = v.x + i * sep * cosTheta;
ps[i].y = v.y + i * sep * sinTheta;
}
} else {
for (i = 0; i < mult; i++) {
ps[mult - i - 1].x = v.x + i * sep * cosTheta;
ps[mult - i - 1].y = v.y + i * sep * sinTheta;
}
}
return ps;
}
/*
* Simple graph structure for recording the triangle graph.
*/
typedef struct {
size_t ne; // no. of edges.
int *edges; /* indices of edges adjacent to node. */
pointf ctr; /* center of triangle. */
} tnode;
typedef struct {
int t, h; /* indices of head and tail nodes */
ipair seg; /* indices of points forming shared segment */
double dist; /* length of edge; usually distance between centers */
} tedge;
typedef struct {
tnode *nodes;
size_t nnodes; // number of nodes
tedge *edges;
int nedges; // number of edges
} tgraph;
struct router_s {
int pn; /* no. of points */
pointf *ps; /* all points in configuration */
int *obs; /* indices in obstacle i are obs[i]...obs[i+1]-1 */
int *tris; /* indices of triangle i are tris[3*i]...tris[3*i+2] */
Dt_t *trimap; /* map from obstacle side (a,b) to index of adj. triangle */
int tn; /* no. of nodes in tg */
tgraph tg; /* graph of triangles */
};
/* Given an array of points and 3 integer indices,
* compute and return the center of the triangle.
*/
static pointf triCenter(pointf * pts, int *idxs)
{
pointf a = pts[*idxs++];
pointf b = pts[*idxs++];
pointf c = pts[*idxs++];
pointf p;
p.x = (a.x + b.x + c.x) / 3.0;
p.y = (a.y + b.y + c.y) / 3.0;
return p;
}
#define MARGIN 32
/* Compute bounding box of polygons, and return it
* with an added margin of MARGIN.
* Store total number of points in *np.
*/
static boxf bbox(Ppoly_t** obsp, int npoly, int *np)
{
boxf bb;
int i, cnt = 0;
pointf p;
Ppoly_t* obs;
bb.LL.x = bb.LL.y = DBL_MAX;
bb.UR.x = bb.UR.y = -DBL_MAX;
for (i = 0; i < npoly; i++) {
obs = *obsp++;
for (size_t j = 0; j < obs->pn; j++) {
p = obs->ps[j];
bb.LL.x = fmin(bb.LL.x, p.x);
bb.UR.x = fmax(bb.UR.x, p.x);
bb.LL.y = fmin(bb.LL.y, p.y);
bb.UR.y = fmax(bb.UR.y, p.y);
cnt++;
}
}
*np = cnt;
bb.LL.x -= MARGIN;
bb.LL.y -= MARGIN;
bb.UR.x += MARGIN;
bb.UR.y += MARGIN;
return bb;
}
static int *mkTriIndices(surface_t * sf)
{
int *tris = gv_calloc(3 * sf->nfaces, sizeof(int));
memcpy(tris, sf->faces, 3 * sf->nfaces * sizeof(int));
return tris;
}
/* Returns a pair of integer (x,y), x < y, where x and y are the
* indices of the two vertices of the shared edge.
*/
static ipair sharedEdge(int *p, int *q)
{
ipair pt;
int p1, p2;
p1 = *p;
p2 = *(p + 1);
if (p1 == *q) {
if (p2 != *(q + 1) && p2 != *(q + 2)) {
p2 = *(p + 2);
}
} else if (p1 == *(q + 1)) {
if (p2 != *q && p2 != *(q + 2)) {
p2 = *(p + 2);
}
} else if (p1 == *(q + 2)) {
if (p2 != *q && p2 != *(q + 1)) {
p2 = *(p + 2);
}
} else {
p1 = *(p + 2);
}
if (p1 > p2) {
SWAP(&p1, &p2);
}
pt.i = p1;
pt.j = p2;
return pt;
}
/* Add an edge to g, with tail t, head h, and shared
* segment seg.
*/
static void addTriEdge(tgraph *g, int t, int h, ipair seg) {
g->edges = gv_recalloc(g->edges, g->nedges, g->nedges + 1,
sizeof(g->edges[0]));
tedge *ep = g->edges + g->nedges;
tnode *tp = g->nodes + t;
tnode *hp = g->nodes + h;
ep->t = t;
ep->h = h;
ep->dist = DIST(tp->ctr, hp->ctr);
ep->seg = seg;
tp->edges = gv_recalloc(tp->edges, tp->ne, tp->ne + 1,
sizeof(tp->edges[0]));
tp->edges[tp->ne++] = g->nedges;
hp->edges = gv_recalloc(hp->edges, hp->ne, hp->ne + 1,
sizeof(hp->edges[0]));
hp->edges[hp->ne++] = g->nedges;
g->nedges++;
}
static void freeTriGraph(tgraph * tg)
{
for (size_t i = 0; i < tg->nnodes; ++i) {
free(tg->nodes[i].edges);
}
free(tg->nodes);
free(tg->edges);
*tg = (tgraph){0};
}
/* Generate graph with triangles as nodes and an edge iff two triangles
* share an edge.
*/
static tgraph mkTriGraph(surface_t *sf, pointf *pts) {
int j;
tgraph g = {0};
/* plus 2 for nodes added as endpoints of an edge */
g.nnodes = sf->nfaces + 2;
g.nodes = gv_calloc(g.nnodes, sizeof(tnode));
for (int i = 0; i < sf->nfaces; i++) {
tnode *const np = g.nodes + i;
np->ctr = triCenter(pts, sf->faces + 3 * i);
}
for (int i = 0; i < sf->nfaces; i++) {
int *jp = sf->neigh + 3 * i;
for (int ne = 0; ne < 3 && (j = *jp++) != -1; ++ne) {
if (i < j) {
ipair seg =
sharedEdge(sf->faces + 3 * i, sf->faces + 3 * j);
addTriEdge(&g, i, j, seg);
}
}
}
return g;
}
void freeRouter(router_t * rtr)
{
free(rtr->ps);
free(rtr->obs);
free(rtr->tris);
dtclose(rtr->trimap);
freeTriGraph(&rtr->tg);
free(rtr);
}
router_t *mkRouter(Ppoly_t** obsp, int npoly)
{
router_t *rtr = gv_alloc(sizeof(router_t));
Ppoly_t* obs;
boxf bb;
int npts;
surface_t *sf;
/* points in obstacle i have indices obsi[i] through obsi[i+1]-1 in pts
*/
int *obsi = gv_calloc(npoly + 1, sizeof(int));
int i, ix = 4, six = 0;
bb = bbox(obsp, npoly, &npts);
npts += 4; /* 4 points of bounding box */
pointf *pts = gv_calloc(npts, sizeof(pointf)); // all points are stored in pts
int *segs = gv_calloc(2 * npts, sizeof(int)); // indices of points forming segments
/* store bounding box in CCW order */
pts[0] = bb.LL;
pts[1].x = bb.UR.x;
pts[1].y = bb.LL.y;
pts[2] = bb.UR;
pts[3].x = bb.LL.x;
pts[3].y = bb.UR.y;
for (i = 1; i <= 4; i++) {
segs[six++] = i - 1;
if (i < 4)
segs[six++] = i;
else
segs[six++] = 0;
}
/* store obstacles in CW order and generate constraint segments */
for (i = 0; i < npoly; i++) {
obsi[i] = ix;
obs = *obsp++;
for (size_t j = 1; j <= obs->pn; j++) {
segs[six++] = ix;
if (j < obs->pn)
segs[six++] = ix + 1;
else
segs[six++] = obsi[i];
pts[ix++] = obs->ps[j - 1];
}
}
obsi[i] = ix;
/* copy points into coordinate arrays */
double *x = gv_calloc(npts, sizeof(double));
double *y = gv_calloc(npts, sizeof(double));
for (i = 0; i < npts; i++) {
x[i] = pts[i].x;
y[i] = pts[i].y;
}
sf = mkSurface(x, y, npts, segs, npts);
free(x);
free(y);
free(segs);
rtr->ps = pts;
rtr->pn = npts;
rtr->obs = obsi;
rtr->tris = mkTriIndices(sf);
rtr->trimap = mapSegToTri(sf);
rtr->tn = sf->nfaces;
rtr->tg = mkTriGraph(sf, pts);
freeSurface(sf);
return rtr;
}
/* Finish edge generation, clipping to nodes and adding arrowhead
* if necessary, and adding edge labels
*/
static void finishEdge(edge_t* e, Ppoly_t spl, int flip) {
if (flip) {
for (size_t j = 0; j < spl.pn / 2; j++) {
SWAP(&spl.ps[spl.pn - 1 - j], &spl.ps[j]);
}
}
if (Verbose > 1)
fprintf(stderr, "spline %s %s\n", agnameof(agtail(e)), agnameof(aghead(e)));
clip_and_install(e, aghead(e), spl.ps, spl.pn, &sinfo);
addEdgeLabels(e);
}
#define EQPT(p,q) (((p).x==(q).x)&&((p).y==(q).y))
/* Hack because path routing doesn't know about the interiors
* of polygons. If the first or last segment of the shortest path
* lies along one of the polygon boundaries, the path may flip
* inside the polygon. To avoid this, we shift the point a bit.
*
* If the edge p(=poly.ps[s])-q of the shortest path is also an
* edge of the border polygon, move p slightly inside the polygon
* and return it. If prv and nxt are the two vertices adjacent to
* p in the polygon, let m be the midpoint of prv--nxt. We then
* move a tiny bit along the ray p->m.
*
* Otherwise, return p unchanged.
*/
static Ppoint_t tweakEnd(Ppoly_t poly, size_t s, Ppoint_t q) {
Ppoint_t prv, nxt, p;
p = poly.ps[s];
nxt = poly.ps[(s + 1) % poly.pn];
if (s == 0)
prv = poly.ps[poly.pn-1];
else
prv = poly.ps[s - 1];
if (EQPT(q, nxt) || EQPT(q, prv) ){
Ppoint_t m;
m.x = (nxt.x + prv.x)/2.0 - p.x;
m.y = (nxt.y + prv.y)/2.0 - p.y;
const double d = hypot(m.x, m.y);
p.x += 0.1*m.x/d;
p.y += 0.1*m.y/d;
}
return p;
}
static void tweakPath(Ppoly_t poly, size_t t, Ppolyline_t pl) {
pl.ps[0] = tweakEnd(poly, 0, pl.ps[1]);
pl.ps[pl.pn-1] = tweakEnd (poly, t, pl.ps[pl.pn-2]);
}
/* Generate splines for e and cohorts.
* Edges go from 0 to t.
* Return 0 on success.
*/
static int genroute(tripoly_t *trip, int t, edge_t *e, int doPolyline) {
pointf eps[2];
pointf **cpts = NULL; /* lists of control points */
Ppoly_t poly;
Ppolyline_t pl, spl;
Ppolyline_t mmpl;
int mult = ED_count(e);
node_t* head = aghead(e);
int rv = 0;
poly.ps = NULL;
pl.pn = 0;
eps[0].x = trip->poly.ps[0].x, eps[0].y = trip->poly.ps[0].y;
eps[1].x = trip->poly.ps[t].x, eps[1].y = trip->poly.ps[t].y;
if (Pshortestpath(&(trip->poly), eps, &pl) < 0) {
agwarningf("Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
rv = 1;
goto finish;
}
if (pl.pn == 2) {
makeStraightEdge(agraphof(head), e, doPolyline, &sinfo);
goto finish;
}
if (mult == 1 || Concentrate) {
poly = trip->poly;
Pedge_t *medges = gv_calloc(poly.pn, sizeof(Pedge_t));
for (size_t j = 0; j < poly.pn; j++) {
medges[j].a = poly.ps[j];
medges[j].b = poly.ps[(j + 1) % poly.pn];
}
assert(t >= 0);
tweakPath(poly, (size_t)t, pl);
if (Proutespline(medges, poly.pn, pl, (Pvector_t[2]){0}, &spl) < 0) {
agwarningf("Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
rv = 1;
goto finish;
}
finishEdge(e, spl, aghead(e) != head);
free(medges);
return 0;
}
const size_t pn = 2 * (pl.pn - 1);
cpts = gv_calloc(pl.pn - 2, sizeof(pointf *));
for (size_t i = 0; i + 2 < pl.pn; i++) {
cpts[i] =
mkCtrlPts(t, mult+1, pl.ps[i], pl.ps[i + 1], pl.ps[i + 2], trip);
if (!cpts[i]) {
agwarningf("Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
rv = 1;
goto finish;
}
}
poly.ps = gv_calloc(pn, sizeof(pointf));
poly.pn = pn;
for (int i = 0; i < mult; i++) {
poly.ps[0] = eps[0];
for (size_t j = 1; j + 1 < pl.pn; j++) {
poly.ps[j] = cpts[j - 1][i];
}
poly.ps[pl.pn - 1] = eps[1];
for (size_t j = 1; j + 1 < pl.pn; j++) {
poly.ps[pn - j] = cpts[j - 1][i + 1];
}
if (Pshortestpath(&poly, eps, &mmpl) < 0) {
agwarningf("Could not create control points for multiple spline for edge (%s,%s)\n", agnameof(agtail(e)), agnameof(aghead(e)));
rv = 1;
goto finish;
}
if (doPolyline) {
make_polyline (mmpl, &spl);
}
else {
Pedge_t *medges = gv_calloc(poly.pn, sizeof(Pedge_t));
for (size_t j = 0; j < poly.pn; j++) {
medges[j].a = poly.ps[j];
medges[j].b = poly.ps[(j + 1) % poly.pn];
}
tweakPath(poly, pl.pn - 1, mmpl);
const bool failed_routing =
Proutespline(medges, poly.pn, mmpl, (Pvector_t[2]){0}, &spl) < 0;
free(medges);
if (failed_routing) {
agwarningf("Could not create control points for multiple spline for edge (%s,%s)\n",
agnameof(agtail(e)), agnameof(aghead(e)));
rv = 1;
goto finish;
}
}
finishEdge(e, spl, aghead(e) != head);
e = ED_to_virt(e);
}
finish :
if (cpts) {
for (size_t i = 0; i + 2 < pl.pn; i++)
free(cpts[i]);
free(cpts);
}
free(poly.ps);
return rv;
}
#define NSMALL -0.0000000001
/// returns true iff q is in the convex cone a-b-c
static int
inCone (pointf a, pointf b, pointf c, pointf q)
{
return area2(q,a,b) >= NSMALL && area2(q,b,c) >= NSMALL;
}
static pointf north = {0, 1};
static pointf northeast = {1, 1};
static pointf east = {1, 0};
static pointf southeast = {1, -1};
static pointf south = {0, -1};
static pointf southwest = {-1, -1};
static pointf west = {-1, 0};
static pointf northwest = {-1, 1};
/* Add node to graph representing spline end point p inside obstruction obs_id.
* For each side of obstruction, add edge from p to corresponding triangle.
* The node id of the new node in the graph is v_id.
* If p lies on the side of its node (sides != 0), we limit the triangles
* to those within 45 degrees of each side of the natural direction of p.
*/
static void addEndpoint(router_t * rtr, pointf p, node_t* v, int v_id, int sides)
{
int obs_id = ND_lim(v);
int starti = rtr->obs[obs_id];
int endi = rtr->obs[obs_id + 1];
pointf* pts = rtr->ps;
int i, t;
pointf vr, v0, v1;
switch (sides) {
case TOP :
vr = add_pointf (p, north);
v0 = add_pointf (p, northwest);
v1 = add_pointf (p, northeast);
break;
case TOP|RIGHT :
vr = add_pointf (p, northeast);
v0 = add_pointf (p, north);
v1 = add_pointf (p, east);
break;
case RIGHT :
vr = add_pointf (p, east);
v0 = add_pointf (p, northeast);
v1 = add_pointf (p, southeast);
break;
case BOTTOM|RIGHT :
vr = add_pointf (p, southeast);
v0 = add_pointf (p, east);
v1 = add_pointf (p, south);
break;
case BOTTOM :
vr = add_pointf (p, south);
v0 = add_pointf (p, southeast);
v1 = add_pointf (p, southwest);
break;
case BOTTOM|LEFT :
vr = add_pointf (p, southwest);
v0 = add_pointf (p, south);
v1 = add_pointf (p, west);
break;
case LEFT :
vr = add_pointf (p, west);
v0 = add_pointf (p, southwest);
v1 = add_pointf (p, northwest);
break;
case TOP|LEFT :
vr = add_pointf (p, northwest);
v0 = add_pointf (p, west);
v1 = add_pointf (p, north);
break;
case 0 :
break;
default :
assert (0);
break;
}
rtr->tg.nodes[v_id].ne = 0;
rtr->tg.nodes[v_id].ctr = p;
for (i = starti; i < endi; i++) {
ipair seg;
seg.i = i;
if (i < endi - 1)
seg.j = i + 1;
else
seg.j = starti;
t = findMap(rtr->trimap, seg.i, seg.j);
if (sides && !inCone (v0, p, v1, pts[seg.i]) && !inCone (v0, p, v1, pts[seg.j]) && !raySeg(p,vr,pts[seg.i],pts[seg.j]))
continue;
addTriEdge(&rtr->tg, v_id, t, seg);
}
assert(rtr->tg.nodes[v_id].ne > 0 && "no edges were added");
}
/* Given edge from i to j, find segment associated
* with the edge.
*
* This lookup could be made faster by modifying the
* shortest path algorithm to store the edges rather than
* the nodes.
*/
static ipair edgeToSeg(tgraph tg, int i, int j) {
ipair ip = {0, 0};
tnode *np = tg.nodes + i;
tedge *ep;
for (size_t k = 0; k < np->ne; k++) {
ep = tg.edges + np->edges[k];
if (ep->t == j || ep->h == j)
return ep->seg;
}
assert(0);
return ip;
}
static void
freeTripoly (tripoly_t* trip)
{
tri* tp;
tri* nxt;
free (trip->poly.ps);
for (size_t i = 0; i < trip->poly.pn; i++) {
for (tp = trip->triMap[i]; tp; tp = nxt) {
nxt = tp->nxttri;
free (tp);
}
}
free (trip->triMap);
free (trip);
}
/* Auxiliary data structure used to translate a path of rectangles
* into a polygon. Each side_t represents a vertex on one side of
* the polygon. v is the index of the vertex in the global router_t,
* and ts is a linked list of the indices of segments of sides opposite
* to v in some triangle on the path. These lists will be translated
* to polygon indices by mapTri, and stored in tripoly_t.triMap.
*/
typedef struct {
int v;
tri *ts;
} side_t;
/* Construct simple polygon from shortest path from t to s in g.
* dad gives the indices of the triangles on path.
* sx used to store index of s in points.
* index of t is always 0
*/
static tripoly_t *mkPoly(router_t * rtr, int *dad, int s, int t,
pointf p_s, pointf p_t, int *sx)
{
tripoly_t *ps;
int nxt;
ipair p;
size_t nt = 0;
int idx;
int cnt1 = 0;
int cnt2 = 0;
pointf *pts;
/* maps vertex index used in router_t to vertex index used in tripoly */
Dt_t *vmap;
/* count number of triangles in path */
for (nxt = dad[t]; nxt != s; nxt = dad[nxt]) {
nt++;
assert (nxt != dad[nxt] && "infinite loop due to 'nxt' not changing");
}
side_t *side1 = gv_calloc(nt + 4, sizeof(side_t));
side_t *side2 = gv_calloc(nt + 4, sizeof(side_t));
nxt = dad[t];
p = edgeToSeg(rtr->tg, nxt, t);
side1[cnt1].ts = addTri(-1, p.j, NULL);
side1[cnt1++].v = p.i;
side2[cnt2].ts = addTri(-1, p.i, NULL);
side2[cnt2++].v = p.j;
t = nxt;
for (nxt = dad[t]; nxt >= 0; nxt = dad[nxt]) {
p = edgeToSeg(rtr->tg, t, nxt);
if (p.i == side1[cnt1 - 1].v) {
side1[cnt1 - 1].ts =
addTri(side2[cnt2 - 1].v, p.j, side1[cnt1 - 1].ts);
side2[cnt2 - 1].ts =
addTri(side1[cnt1 - 1].v, p.j, side2[cnt2 - 1].ts);
side2[cnt2].ts =
addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
side2[cnt2++].v = p.j;
} else if (p.i == side2[cnt2 - 1].v) {
side1[cnt1 - 1].ts =
addTri(side2[cnt2 - 1].v, p.j, side1[cnt1 - 1].ts);
side2[cnt2 - 1].ts =
addTri(side1[cnt1 - 1].v, p.j, side2[cnt2 - 1].ts);
side1[cnt1].ts =
addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
side1[cnt1++].v = p.j;
} else if (p.j == side1[cnt1 - 1].v) {
side1[cnt1 - 1].ts =
addTri(side2[cnt2 - 1].v, p.i, side1[cnt1 - 1].ts);
side2[cnt2 - 1].ts =
addTri(side1[cnt1 - 1].v, p.i, side2[cnt2 - 1].ts);
side2[cnt2].ts =
addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
side2[cnt2++].v = p.i;
} else {
side1[cnt1 - 1].ts =
addTri(side2[cnt2 - 1].v, p.i, side1[cnt1 - 1].ts);
side2[cnt2 - 1].ts =
addTri(side1[cnt1 - 1].v, p.i, side2[cnt2 - 1].ts);
side1[cnt1].ts =
addTri(side2[cnt2 - 1].v, side1[cnt1 - 1].v, NULL);
side1[cnt1++].v = p.i;
}
t = nxt;
}
side1[cnt1 - 1].ts = addTri(-2, side2[cnt2 - 1].v, side1[cnt1 - 1].ts);
side2[cnt2 - 1].ts = addTri(-2, side1[cnt1 - 1].v, side2[cnt2 - 1].ts);
/* store points in pts starting with t in 0,
* then side1, then s, then side2
*/
vmap = dtopen(&ipairdisc, Dtoset);
vmapAdd(vmap, -1, 0);
vmapAdd(vmap, -2, cnt1 + 1);
pointf *pps = pts = gv_calloc(nt + 4, sizeof(pointf));
tri **trim = gv_calloc(nt + 4, sizeof(tri*));
*pps++ = p_t;
idx = 1;
for (int i = 0; i < cnt1; i++) {
vmapAdd(vmap, side1[i].v, idx);
*pps++ = rtr->ps[side1[i].v];
trim[idx++] = side1[i].ts;
}
*pps++ = p_s;
idx++;
for (int i = cnt2 - 1; i >= 0; i--) {
vmapAdd(vmap, side2[i].v, idx);
*pps++ = rtr->ps[side2[i].v];
trim[idx++] = side2[i].ts;
}
for (size_t i = 0; i < nt + 4; i++) {
mapTri(vmap, trim[i]);
}
ps = gv_alloc(sizeof(tripoly_t));
ps->poly.pn = nt + 4; /* nt triangles gives nt+2 points plus s and t */
ps->poly.ps = pts;
ps->triMap = trim;
free (side1);
free (side2);
dtclose(vmap);
*sx = cnt1 + 1; /* index of s in ps */
return ps;
}
/// remove edges and nodes added for current edge routing
static void resetGraph(tgraph g, int ncnt, int ecnt,
size_t *original_edge_count) {
int i;
tnode *np = g.nodes;
g.nedges = ecnt;
for (i = 0; i < ncnt; i++) {
np->ne = original_edge_count[i];
np++;
}
}
#define PQTYPE int
#define PQVTYPE double
#define PQ_TYPES
#include <neatogen/fPQ.h>
#undef PQ_TYPES
typedef struct {
PQ pq;
PQVTYPE *vals;
int *idxs;
} PPQ;
#define N_VAL(pq,n) ((PPQ*)pq)->vals[n]
#define N_IDX(pq,n) ((PPQ*)pq)->idxs[n]
#define PQ_CODE
#include <neatogen/fPQ.h>
#undef PQ_CODE
#define N_DAD(n) dad[n]
#define E_WT(e) (e->dist)
#define UNSEEN (-FLT_MAX)
/* Find the shortest path with lengths in g from
* v0 to v1. The returned vector (dad) encodes the
* shorted path from v1 to v0. That path is given by
* v1, dad[v1], dad[dad[v1]], ..., v0.
*/
static int *triPath(tgraph g, int n, int v0, int v1, PQ *pq) {
int i, adjn;
double d;
tnode *np;
tedge *e;
int *dad = gv_calloc(n, sizeof(int));
for (i = 0; i < pq->PQsize; i++)
N_VAL(pq, i) = UNSEEN;
PQinit(pq);
N_DAD(v0) = -1;
N_VAL(pq, v0) = 0;
if (PQinsert(pq, v0))
return NULL;
while ((i = PQremove(pq)) != -1) {
N_VAL(pq, i) *= -1;
if (i == v1)
break;
np = g.nodes + i;
for (size_t j = 0; j < np->ne; j++) {
e = g.edges + np->edges[j];
if (e->t == i)
adjn = e->h;
else
adjn = e->t;
if (N_VAL(pq, adjn) < 0) {
d = -(N_VAL(pq, i) + E_WT(e));
if (is_exactly_equal(N_VAL(pq, adjn), UNSEEN)) {
N_VAL(pq, adjn) = d;
N_DAD(adjn) = i;
if (PQinsert(pq, adjn)) {
free(dad);
return NULL;
}
} else if (N_VAL(pq, adjn) < d) {
PQupdate(pq, adjn, d);
N_DAD(adjn) = i;
}
}
}
}
return dad;
}
/* FIX: we don't really use the shortest path provided by ED_path,
* so avoid in neato spline code.
* Return 0 on success.
*/
int makeMultiSpline(edge_t* e, router_t * rtr, int doPolyline) {
Ppolyline_t line = ED_path(e);
node_t *t = agtail(e);
node_t *h = aghead(e);
pointf t_p = line.ps[0];
pointf h_p = line.ps[line.pn - 1];
tripoly_t *poly;
int idx;
int *sp;
int t_id = rtr->tn;
int h_id = rtr->tn + 1;
int ecnt = rtr->tg.nedges;
PPQ pq;
int ret;
// record the number of edges in each node, so we can drop the added ones
// later
size_t *original_edge_count = gv_calloc(rtr->tg.nnodes,
sizeof(original_edge_count[0]));
for (size_t i = 0; i < rtr->tg.nnodes; ++i)
original_edge_count[i] = rtr->tg.nodes[i].ne;
/* Add endpoints to triangle graph */
addEndpoint(rtr, t_p, t, t_id, ED_tail_port(e).side);
addEndpoint(rtr, h_p, h, h_id, ED_head_port(e).side);
/* Initialize priority queue */
PQgen(&pq.pq, rtr->tn + 2, -1);
PQTYPE *idxs = gv_calloc(pq.pq.PQsize + 1, sizeof(PQTYPE));
PQVTYPE *vals = gv_calloc(pq.pq.PQsize + 1, sizeof(PQVTYPE));
vals[0] = 0;
pq.vals = vals + 1;
pq.idxs = idxs + 1;
/* Find shortest path of triangles */
sp = triPath(rtr->tg, rtr->tn+2, h_id, t_id, (PQ *) & pq);
free(vals);
free(idxs);
PQfree(&(pq.pq), 0);
/* Use path of triangles to generate guiding polygon */
if (sp) {
poly = mkPoly(rtr, sp, h_id, t_id, h_p, t_p, &idx);
free(sp);
/* Generate multiple splines using polygon */
ret = genroute(poly, idx, e, doPolyline);
freeTripoly (poly);
}
else ret = -1;
resetGraph(rtr->tg, rtr->tn, ecnt, original_edge_count);
free(original_edge_count);
return ret;
}
|