File: quad_prog_vpsc.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (619 lines) | stat: -rw-r--r-- 17,896 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/**
 *
 * Authors:
 *   Tim Dwyer <tgdwyer@gmail.com>
 *
 * Copyright (C) 2005 Authors
 *
 * This version is released under the CPL (Common Public License) with
 * the Graphviz distribution.
 * A version is also available under the LGPL as part of the Adaptagrams
 * project: http://sourceforge.net/projects/adaptagrams.  
 * If you make improvements or bug fixes to this code it would be much
 * appreciated if you could also contribute those changes back to the
 * Adaptagrams repository.
 */

/**********************************************************
 *
 * Solve a quadratic function f(X) = X' e->A X + b X
 * subject to a set of separation constraints e->cs
 *
 * Tim Dwyer, 2006
 **********************************************************/

#include <common/geomprocs.h>
#include <neatogen/digcola.h>
#include <stdbool.h>
#include <util/alloc.h>
#ifdef IPSEPCOLA
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <float.h>
#include <assert.h>
#include <neatogen/matrix_ops.h>
#include <neatogen/kkutils.h>
#include <vpsc/csolve_VPSC.h>
#include <neatogen/quad_prog_vpsc.h>
#include <neatogen/quad_prog_solver.h>

/* #define CONMAJ_LOGGING 1 */
#define quad_prog_tol 1e-4

/*
 * Use gradient-projection to solve Variable Placement with Separation Constraints problem.
 */
int
constrained_majorization_vpsc(CMajEnvVPSC * e, float *b, float *place,
			      int max_iterations)
{
    int i, j, counter;
    float *g, *old_place, *d;
    /* for laplacian computation need number of real vars and those
     * dummy vars included in lap
     */
    int n = e->nv + e->nldv;
    bool converged = false;
#ifdef CONMAJ_LOGGING
    static int call_no = 0;
#endif				/* CONMAJ_LOGGING */

    if (max_iterations == 0)
	return 0;
    g = e->fArray1;
    old_place = e->fArray2;
    d = e->fArray3;
    if (e->m > 0) {
	for (i = 0; i < n; i++) {
	    setVariableDesiredPos(e->vs[i], place[i]);
	}
	satisfyVPSC(e->vpsc);
	for (i = 0; i < n; i++) {
	    place[i] = getVariablePos(e->vs[i]);
	}
    }
#ifdef CONMAJ_LOGGING
    float prev_stress = 0;
    for (i = 0; i < n; i++) {
	prev_stress += 2 * b[i] * place[i];
	for (j = 0; j < n; j++) {
	    prev_stress -= e->A[i][j] * place[j] * place[i];
	}
    }
    FILE *logfile = fopen("constrained_majorization_log", "a");
#endif

    for (counter = 0; counter < max_iterations && !converged; counter++) {
	float test = 0;
	float alpha, beta;
	float numerator = 0, denominator = 0, r;
	converged = true;
	/* find steepest descent direction */
	for (i = 0; i < n; i++) {
	    old_place[i] = place[i];
	    g[i] = 2 * b[i];
	    for (j = 0; j < n; j++) {
		g[i] -= 2 * e->A[i][j] * place[j];
	    }
	}
	for (i = 0; i < n; i++) {
	    numerator += g[i] * g[i];
	    r = 0;
	    for (j = 0; j < n; j++) {
		r += 2 * e->A[i][j] * g[j];
	    }
	    denominator -= r * g[i];
	}
	if (denominator != 0)
	    alpha = numerator / denominator;
	else
	    alpha = 1.0;
	for (i = 0; i < n; i++) {
	    place[i] -= alpha * g[i];
	}
	if (e->m > 0) {
	    /* project to constraint boundary */
	    for (i = 0; i < n; i++) {
		setVariableDesiredPos(e->vs[i], place[i]);
	    }
	    satisfyVPSC(e->vpsc);
	    for (i = 0; i < n; i++) {
		place[i] = getVariablePos(e->vs[i]);
	    }
	}
	/* set place to the intersection of old_place-g and boundary and 
	 * compute d, the vector from intersection pnt to projection pnt
	 */
	for (i = 0; i < n; i++) {
	    d[i] = place[i] - old_place[i];
	}
	/* now compute beta */
	numerator = 0, denominator = 0;
	for (i = 0; i < n; i++) {
	    numerator += g[i] * d[i];
	    r = 0;
	    for (j = 0; j < n; j++) {
		r += 2 * e->A[i][j] * d[j];
	    }
	    denominator += r * d[i];
	}
	if (denominator != 0.0)
	    beta = numerator / denominator;
	else
	    beta = 1.0;

	for (i = 0; i < n; i++) {
	    /* beta > 1.0 takes us back outside the feasible region
	     * beta < 0 clearly not useful and may happen due to numerical imp.
	     */
	    if (beta > 0 && beta < 1.0) {
		place[i] = old_place[i] + beta * d[i];
	    }
	    test += fabsf(place[i] - old_place[i]);
	}
#ifdef CONMAJ_LOGGING
	float stress = 0;
	for (i = 0; i < n; i++) {
	    stress += 2 * b[i] * place[i];
	    for (j = 0; j < n; j++) {
		stress -= e->A[i][j] * place[j] * place[i];
	    }
	}
	fprintf(logfile, "%d: stress=%f, test=%f, %s\n", call_no, stress,
		test, (stress >= prev_stress) ? "No Improvement" : "");
	prev_stress = stress;
#endif
	if (test > quad_prog_tol) {
	    converged = false;
	}
    }
#ifdef CONMAJ_LOGGING
    call_no++;
    fclose(logfile);
#endif
    return counter;
}

/*
 * Set up environment and global constraints (dir-edge constraints, containment constraints
 * etc).
 *
 * diredges: 0=no dir edge constraints
 *           1=one separation constraint for each edge (in acyclic subgraph)
 *           2=DiG-CoLa level constraints
 */
CMajEnvVPSC *initCMajVPSC(int n, float *packedMat, vtx_data * graph,
			  ipsep_options * opt, int diredges)
{
    int i;
    /* nv is the number of real nodes */
    int nConCs;
    CMajEnvVPSC *e = gv_alloc(sizeof(CMajEnvVPSC));
    e->A = NULL;
    /* if we have clusters then we'll need two constraints for each var in
     * a cluster */
    e->nldv = 2 * opt->clusters.nclusters;
    e->nv = n - e->nldv;
    e->ndv = 0;

    e->gcs = NULL;
    e->vs = gv_calloc(n, sizeof(Variable*));
    for (i = 0; i < n; i++) {
	e->vs[i] = newVariable(i, 1.0, 1.0);
    }
    e->gm = 0;
    if (diredges == 1) {
	if (Verbose)
	    fprintf(stderr, "  generate edge constraints...\n");
	for (i = 0; i < e->nv; i++) {
	    for (size_t j = 1; j < graph[i].nedges; j++) {
		if (graph[i].edists[j] > 0.01) {
		    e->gm++;
		}
	    }
	}
	e->gcs = newConstraints(e->gm);
	e->gm = 0;
	for (i = 0; i < e->nv; i++) {
	    for (size_t j = 1; j < graph[i].nedges; j++) {
		int u = i, v = graph[i].edges[j];
		if (graph[i].edists[j] > 0) {
		    e->gcs[e->gm++] =
			newConstraint(e->vs[u], e->vs[v], opt->edge_gap);
		}
	    }
	}
    } else if (diredges == 2) {
	int *ordering = NULL, *ls = NULL, cvar;
	double halfgap;
	DigColaLevel *levels;
	Variable **vs = e->vs;
	/* e->ndv is the number of dummy variables required, one for each boundary */
	if (compute_hierarchy(graph, e->nv, 1e-2, 1e-1, NULL, &ordering, &ls,
			  &e->ndv)) return NULL;
	levels = assign_digcola_levels(ordering, e->nv, ls, e->ndv);
	if (Verbose)
	    fprintf(stderr, "Found %d DiG-CoLa boundaries\n", e->ndv);
	e->gm =
	    get_num_digcola_constraints(levels, e->ndv + 1) + e->ndv - 1;
	e->gcs = newConstraints(e->gm);
	e->gm = 0;
	e->vs = gv_calloc(n + e->ndv, sizeof(Variable*));
	for (i = 0; i < n; i++) {
	    e->vs[i] = vs[i];
	}
	free(vs);
	/* create dummy vars */
	for (i = 0; i < e->ndv; i++) {
	    /* dummy vars should have 0 weight */
	    cvar = n + i;
	    e->vs[cvar] = newVariable(cvar, 1.0, 0.000001);
	}
	halfgap = opt->edge_gap;
	for (i = 0; i < e->ndv; i++) {
	    cvar = n + i;
	    /* outgoing constraints for each var in level below boundary */
	    for (int j = 0; j < levels[i].num_nodes; j++) {
		e->gcs[e->gm++] =
		    newConstraint(e->vs[levels[i].nodes[j]], e->vs[cvar],
				  halfgap);
	    }
	    /* incoming constraints for each var in level above boundary */
	    for (int j = 0; j < levels[i + 1].num_nodes; j++) {
		e->gcs[e->gm++] =
		    newConstraint(e->vs[cvar],
				  e->vs[levels[i + 1].nodes[j]], halfgap);
	    }
	}
	/* constraints between adjacent boundary dummy vars */
	for (i = 0; i < e->ndv - 1; i++) {
	    e->gcs[e->gm++] =
		newConstraint(e->vs[n + i], e->vs[n + i + 1], 0);
	}
    }
    if (opt->clusters.nclusters > 0) {
	Constraint **ecs = e->gcs;
	nConCs = 2 * opt->clusters.nvars;
	e->gcs = newConstraints(e->gm + nConCs);
	for (i = 0; i < e->gm; i++) {
	    e->gcs[i] = ecs[i];
	}
	if (ecs != NULL)
	    deleteConstraints(0, ecs);
	for (i = 0; i < opt->clusters.nclusters; i++) {
	    for (int j = 0; j < opt->clusters.clustersizes[i]; j++) {
		Variable *v = e->vs[opt->clusters.clusters[i][j]];
		Variable *cl = e->vs[e->nv + 2 * i];
		Variable *cr = e->vs[e->nv + 2 * i + 1];
		e->gcs[e->gm++] = newConstraint(cl, v, 0);
		e->gcs[e->gm++] = newConstraint(v, cr, 0);
	    }
	}
    }

    e->m = 0;
    e->cs = NULL;
    if (e->gm > 0) {
	e->vpsc = newIncVPSC(n + e->ndv, e->vs, e->gm, e->gcs);
	e->m = e->gm;
	e->cs = e->gcs;
    }
    if (packedMat != NULL) {
	e->A = unpackMatrix(packedMat, n);
    }

    e->fArray1 = gv_calloc(n, sizeof(float));
    e->fArray2 = gv_calloc(n, sizeof(float));
    e->fArray3 = gv_calloc(n, sizeof(float));
    if (Verbose)
	fprintf(stderr,
		"  initCMajVPSC done: %d global constraints generated.\n",
		e->m);
    return e;
}

void deleteCMajEnvVPSC(CMajEnvVPSC * e)
{
    int i;
    if (e->A != NULL) {
	free(e->A[0]);
	free(e->A);
    }
    if (e->m > 0) {
	deleteVPSC(e->vpsc);
	if (e->cs != e->gcs && e->gcs != NULL)
	    deleteConstraints(0, e->gcs);
	deleteConstraints(e->m, e->cs);
	for (i = 0; i < e->nv + e->nldv + e->ndv; i++) {
	    deleteVariable(e->vs[i]);
	}
	free(e->vs);
    }
    free(e->fArray1);
    free(e->fArray2);
    free(e->fArray3);
    free(e);
}

/* generate non-overlap constraints inside each cluster, including dummy
 * nodes at bounds of cluster
 * generate constraints again for top level nodes and clusters treating
 * clusters as rectangles of dim (l,r,b,t)
 * for each cluster map in-constraints to l out-constraints to r 
 *
 * For now, we'll keep the global containment constraints already
 * generated for each cluster, and simply generate non-overlap constraints
 * for all nodes and then an additional set of non-overlap constraints for
 * clusters that we'll map back to the dummy vars as above.
 */
void generateNonoverlapConstraints(CMajEnvVPSC * e,
				   float nsizeScale,
				   float **coords,
				   int k,
				   bool transitiveClosure,
				   ipsep_options * opt)
{
    Constraint **csol, **csolptr;
    int i, j, mol = 0;
    int n = e->nv + e->nldv;
    boxf* bb = gv_calloc(n, sizeof(boxf));
    bool genclusters = opt->clusters.nclusters > 0;
    if (genclusters) {
	/* n is the number of real variables, not dummy cluster vars */
	n -= 2 * opt->clusters.nclusters;
    }
    if (k == 0) {
	/* grow a bit in the x dimension, so that if overlap is resolved
	 * horizontally then it won't be considered overlapping vertically
	 */
	nsizeScale *= 1.0001f;
    }
    for (i = 0; i < n; i++) {
	bb[i].LL.x =
	    coords[0][i] - nsizeScale * opt->nsize[i].x / 2.0 -
	    opt->gap.x / 2.0;
	bb[i].UR.x =
	    coords[0][i] + nsizeScale * opt->nsize[i].x / 2.0 +
	    opt->gap.x / 2.0;
	bb[i].LL.y =
	    coords[1][i] - nsizeScale * opt->nsize[i].y / 2.0 -
	    opt->gap.y / 2.0;
	bb[i].UR.y =
	    coords[1][i] + nsizeScale * opt->nsize[i].y / 2.0 +
	    opt->gap.y / 2.0;
    }
    if (genclusters) {
	Constraint ***cscl = gv_calloc(opt->clusters.nclusters + 1,
	                               sizeof(Constraint**));
	int* cm = gv_calloc(opt->clusters.nclusters + 1, sizeof(int));
	for (i = 0; i < opt->clusters.nclusters; i++) {
	    int cn = opt->clusters.clustersizes[i];
	    Variable** cvs = gv_calloc(cn + 2, sizeof(Variable*));
	    boxf* cbb = gv_calloc(cn + 2, sizeof(boxf));
	    /* compute cluster bounding bb */
	    boxf container;
	    container.LL.x = container.LL.y = DBL_MAX;
	    container.UR.x = container.UR.y = -DBL_MAX;
	    for (j = 0; j < cn; j++) {
		int iv = opt->clusters.clusters[i][j];
		cvs[j] = e->vs[iv];
		B2BF(bb[iv], cbb[j]);
		EXPANDBB(&container, bb[iv]);
	    }
	    B2BF(container, opt->clusters.bb[i]);
	    cvs[cn] = e->vs[n + 2 * i];
	    cvs[cn + 1] = e->vs[n + 2 * i + 1];
	    B2BF(container, cbb[cn]);
	    B2BF(container, cbb[cn + 1]);
	    if (k == 0) {
		cbb[cn].UR.x = container.LL.x + 0.0001;
		cbb[cn + 1].LL.x = container.UR.x - 0.0001;
		cm[i] =
		    genXConstraints(cn + 2, cbb, cvs, &cscl[i],
				    transitiveClosure);
	    } else {
		cbb[cn].UR.y = container.LL.y + 0.0001;
		cbb[cn + 1].LL.y = container.UR.y - 0.0001;
		cm[i] = genYConstraints(cn + 2, cbb, cvs, &cscl[i]);
	    }
	    mol += cm[i];
	    free (cvs);
	    free (cbb);
	}
	/* generate top level constraints */
	{
	    int cn = opt->clusters.ntoplevel + opt->clusters.nclusters;
	    Variable** cvs = gv_calloc(cn, sizeof(Variable*));
	    boxf* cbb = gv_calloc(cn, sizeof(boxf));
	    for (i = 0; i < opt->clusters.ntoplevel; i++) {
		int iv = opt->clusters.toplevel[i];
		cvs[i] = e->vs[iv];
		B2BF(bb[iv], cbb[i]);
	    }
	    /* make dummy variables for clusters */
	    for (i = opt->clusters.ntoplevel; i < cn; i++) {
		cvs[i] = newVariable(123 + i, 1, 1);
		j = i - opt->clusters.ntoplevel;
		B2BF(opt->clusters.bb[j], cbb[i]);
	    }
	    i = opt->clusters.nclusters;
	    if (k == 0) {
		cm[i] =
		    genXConstraints(cn, cbb, cvs, &cscl[i],
				    transitiveClosure);
	    } else {
		cm[i] = genYConstraints(cn, cbb, cvs, &cscl[i]);
	    }
	    /* remap constraints from tmp dummy vars to cluster l and r vars */
	    for (i = opt->clusters.ntoplevel; i < cn; i++) {
		double dgap;
		j = i - opt->clusters.ntoplevel;
		/* dgap is the change in required constraint gap.
		 * since we are going from a source rectangle the size
		 * of the cluster bounding box to a zero width (in x dim,
		 * zero height in y dim) rectangle, the change will be
		 * half the bb width.
		 */
		if (k == 0) {
		    dgap = -(cbb[i].UR.x - cbb[i].LL.x) / 2.0;
		} else {
		    dgap = -(cbb[i].UR.y - cbb[i].LL.y) / 2.0;
		}
		remapInConstraints(cvs[i], e->vs[n + 2 * j], dgap);
		remapOutConstraints(cvs[i], e->vs[n + 2 * j + 1], dgap);
		/* there may be problems with cycles between
		 * cluster non-overlap and diredge constraints,
		 * to resolve:
		 * 
		 * for each constraint c:v->cvs[i]:
		 *   if exists diredge constraint u->v where u in c:
		 *     remap v->cl to cr->v (gap = height(v)/2)
		 *
		 * in = getInConstraints(cvs[i])
		 * for(c : in) {
		 *   assert(c.right==cvs[i]);
		 *   vin = getOutConstraints(v=c.left)
		 *   for(d : vin) {
		 *     if(d.left.cluster==i):
		 *       tmp = d.left
		 *       d.left = d.right
		 *       d.right = tmp
		 *       d.gap = height(d.right)/2
		 *   }
		 * }
		 *       
		 */
		deleteVariable(cvs[i]);
	    }
	    mol += cm[opt->clusters.nclusters];
	    free (cvs);
	    free (cbb);
	}
	csolptr = csol = newConstraints(mol);
	for (i = 0; i < opt->clusters.nclusters + 1; i++) {
	    /* copy constraints into csol */
	    for (j = 0; j < cm[i]; j++) {
		*csolptr++ = cscl[i][j];
	    }
	    deleteConstraints(0, cscl[i]);
	}
	free (cscl);
	free (cm);
    } else {
	if (k == 0) {
	    mol = genXConstraints(n, bb, e->vs, &csol, transitiveClosure);
	} else {
	    mol = genYConstraints(n, bb, e->vs, &csol);
	}
    }
    /* remove constraints from previous iteration */
    if (e->m > 0) {
	/* can't reuse instance of VPSC when constraints change! */
	deleteVPSC(e->vpsc);
	for (i = e->gm; i < e->m; i++) {
	    /* delete previous overlap constraints */
	    deleteConstraint(e->cs[i]);
	}
	/* just delete the array, not the elements */
	if (e->cs != e->gcs)
	    deleteConstraints(0, e->cs);
    }
    /* if we have no global constraints then the overlap constraints
     * are all we have to worry about.
     * Otherwise, we have to copy the global and overlap constraints 
     * into the one array
     */
    if (e->gm == 0) {
	e->m = mol;
	e->cs = csol;
    } else {
	e->m = mol + e->gm;
	e->cs = newConstraints(e->m);
	for (i = 0; i < e->m; i++) {
	    if (i < e->gm) {
		e->cs[i] = e->gcs[i];
	    } else {
		e->cs[i] = csol[i - e->gm];
	    }
	}
	/* just delete the array, not the elements */
	deleteConstraints(0, csol);
    }
    if (Verbose)
	fprintf(stderr, "  generated %d constraints\n", e->m);
    e->vpsc = newIncVPSC(e->nv + e->nldv + e->ndv, e->vs, e->m, e->cs);
    free (bb);
}

/*
 * Statically remove overlaps, that is remove all overlaps by moving each node as
 * little as possible.
 */
void removeoverlaps(int n, float **coords, ipsep_options * opt)
{
    int i;
    CMajEnvVPSC *e = initCMajVPSC(n, NULL, NULL, opt, 0);
    generateNonoverlapConstraints(e, 1.0, coords, 0, true, opt);
    solveVPSC(e->vpsc);
    for (i = 0; i < n; i++) {
	coords[0][i] = getVariablePos(e->vs[i]);
    }
    generateNonoverlapConstraints(e, 1.0, coords, 1, false, opt);
    solveVPSC(e->vpsc);
    for (i = 0; i < n; i++) {
	coords[1][i] = getVariablePos(e->vs[i]);
    }
    deleteCMajEnvVPSC(e);
}

/*
 unpack the "ordering" array into an array of DigColaLevel
*/
DigColaLevel *assign_digcola_levels(int *ordering, int n, int *level_inds,
				    int num_divisions)
{
    int i, j;
    DigColaLevel *l = gv_calloc(num_divisions + 1, sizeof(DigColaLevel));
    /* first level */
    l[0].num_nodes = level_inds[0];
    l[0].nodes = gv_calloc(l[0].num_nodes, sizeof(int));
    for (i = 0; i < l[0].num_nodes; i++) {
	l[0].nodes[i] = ordering[i];
    }
    /* second through second last level */
    for (i = 1; i < num_divisions; i++) {
	l[i].num_nodes = level_inds[i] - level_inds[i - 1];
	l[i].nodes = gv_calloc(l[i].num_nodes, sizeof(int));
	for (j = 0; j < l[i].num_nodes; j++) {
	    l[i].nodes[j] = ordering[level_inds[i - 1] + j];
	}
    }
    /* last level */
    if (num_divisions > 0) {
	l[num_divisions].num_nodes = n - level_inds[num_divisions - 1];
	l[num_divisions].nodes = gv_calloc(l[num_divisions].num_nodes, sizeof(int));
	for (i = 0; i < l[num_divisions].num_nodes; i++) {
	    l[num_divisions].nodes[i] =
		ordering[level_inds[num_divisions - 1] + i];
	}
    }
    return l;
}

/*********************
get number of separation constraints based on the number of nodes in each level
ie, num_sep_constraints = sum_i^{num_levels-1} (|L[i]|+|L[i+1]|)
**********************/
int get_num_digcola_constraints(DigColaLevel * levels, int num_levels)
{
    int i, nc = 0;
    for (i = 1; i < num_levels; i++) {
	nc += levels[i].num_nodes + levels[i - 1].num_nodes;
    }
    nc += levels[0].num_nodes + levels[num_levels - 1].num_nodes;
    return nc;
}

#endif				/* IPSEPCOLA */