1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <neatogen/dijkstra.h>
#include <neatogen/neato.h>
#include <neatogen/neatoprocs.h>
#include <neatogen/randomkit.h>
#include <neatogen/sgd.h>
#include <stdlib.h>
#include <util/alloc.h>
#include <util/bitarray.h>
#include <util/gv_math.h>
#include <util/unreachable.h>
static double calculate_stress(double *pos, term_sgd *terms, int n_terms) {
double stress = 0;
for (int ij = 0; ij < n_terms; ij++) {
const double dx = pos[2 * terms[ij].i] - pos[2 * terms[ij].j];
const double dy = pos[2 * terms[ij].i + 1] - pos[2 * terms[ij].j + 1];
const double r = hypot(dx, dy) - terms[ij].d;
stress += terms[ij].w * (r * r);
}
return stress;
}
// it is much faster to shuffle term rather than pointers to term, even though
// the swap is more expensive
static void fisheryates_shuffle(term_sgd *terms, int n_terms,
rk_state *rstate) {
for (int i = n_terms - 1; i >= 1; i--) {
int j = rk_interval(i, rstate);
SWAP(&terms[i], &terms[j]);
}
}
// graph_sgd data structure exists only to make dijkstras faster
static graph_sgd *extract_adjacency(graph_t *G, int model) {
size_t n_nodes = 0, n_edges = 0;
for (node_t *np = agfstnode(G); np; np = agnxtnode(G, np)) {
assert(ND_id(np) == n_nodes);
n_nodes++;
for (edge_t *ep = agfstedge(G, np); ep; ep = agnxtedge(G, ep, np)) {
if (agtail(ep) != aghead(ep)) { // ignore self-loops and double edges
n_edges++;
}
}
}
graph_sgd *graph = gv_alloc(sizeof(graph_sgd));
graph->sources = gv_calloc(n_nodes + 1, sizeof(size_t));
graph->pinneds = bitarray_new(n_nodes);
graph->targets = gv_calloc(n_edges, sizeof(size_t));
graph->weights = gv_calloc(n_edges, sizeof(float));
graph->n = n_nodes;
assert(n_edges <= INT_MAX);
graph->sources[graph->n] = n_edges; // to make looping nice
n_nodes = 0, n_edges = 0;
for (node_t *np = agfstnode(G); np; np = agnxtnode(G, np)) {
assert(n_edges <= INT_MAX);
graph->sources[n_nodes] = n_edges;
bitarray_set(&graph->pinneds, n_nodes, isFixed(np));
for (edge_t *ep = agfstedge(G, np); ep; ep = agnxtedge(G, ep, np)) {
if (agtail(ep) == aghead(ep)) { // ignore self-loops and double edges
continue;
}
node_t *target = (agtail(ep) == np)
? aghead(ep)
: agtail(ep); // in case edge is reversed
graph->targets[n_edges] = (size_t)ND_id(target);
graph->weights[n_edges] = ED_dist(ep);
assert(graph->weights[n_edges] > 0);
n_edges++;
}
n_nodes++;
}
assert(n_nodes == graph->n);
assert(n_edges <= INT_MAX);
assert(n_edges == graph->sources[graph->n]);
graph->sources[n_nodes] = n_edges;
if (model == MODEL_SHORTPATH) {
// do nothing
} else if (model == MODEL_SUBSET) {
// i,j,k refer to actual node indices, while x,y refer to edge indices in
// graph->targets initialise to no neighbours
bitarray_t neighbours_i = bitarray_new(graph->n);
bitarray_t neighbours_j = bitarray_new(graph->n);
for (size_t i = 0; i < graph->n; i++) {
int deg_i = 0;
for (size_t x = graph->sources[i]; x < graph->sources[i + 1]; x++) {
size_t j = graph->targets[x];
if (!bitarray_get(neighbours_i, j)) { // ignore multiedges
bitarray_set(&neighbours_i, j, true); // set up sort of hashset
deg_i++;
}
}
for (size_t x = graph->sources[i]; x < graph->sources[i + 1]; x++) {
size_t j = graph->targets[x];
int intersect = 0;
int deg_j = 0;
for (size_t y = graph->sources[j]; y < graph->sources[j + 1]; y++) {
size_t k = graph->targets[y];
if (!bitarray_get(neighbours_j, k)) { // ignore multiedges
bitarray_set(&neighbours_j, k, true); // set up sort of hashset
deg_j++;
if (bitarray_get(neighbours_i, k)) {
intersect++;
}
}
}
graph->weights[x] = deg_i + deg_j - (2 * intersect);
assert(graph->weights[x] > 0);
for (size_t y = graph->sources[j]; y < graph->sources[j + 1]; y++) {
size_t k = graph->targets[y];
bitarray_set(&neighbours_j, k, false); // reset sort of hashset
}
}
for (size_t x = graph->sources[i]; x < graph->sources[i + 1]; x++) {
size_t j = graph->targets[x];
bitarray_set(&neighbours_i, j, false); // reset sort of hashset
}
}
bitarray_reset(&neighbours_i);
bitarray_reset(&neighbours_j);
} else {
// TODO: model == MODEL_MDS and MODEL_CIRCUIT
UNREACHABLE(); // mds and circuit model not supported
}
return graph;
}
static void free_adjacency(graph_sgd *graph) {
free(graph->sources);
bitarray_reset(&graph->pinneds);
free(graph->targets);
free(graph->weights);
free(graph);
}
void sgd(graph_t *G, /* input graph */
int model /* distance model */) {
if (model == MODEL_CIRCUIT) {
agwarningf("circuit model not yet supported in Gmode=sgd, reverting to "
"shortpath model\n");
model = MODEL_SHORTPATH;
}
if (model == MODEL_MDS) {
agwarningf("mds model not yet supported in Gmode=sgd, reverting to "
"shortpath model\n");
model = MODEL_SHORTPATH;
}
int n = agnnodes(G);
if (Verbose) {
fprintf(stderr, "calculating shortest paths and setting up stress terms:");
start_timer();
}
// calculate how many terms will be needed as fixed nodes can be ignored
int n_fixed = 0, n_terms = 0;
for (int i = 0; i < n; i++) {
if (!isFixed(GD_neato_nlist(G)[i])) {
n_fixed++;
n_terms += n - n_fixed;
}
}
term_sgd *terms = gv_calloc(n_terms, sizeof(term_sgd));
// calculate term values through shortest paths
int offset = 0;
graph_sgd *graph = extract_adjacency(G, model);
for (int i = 0; i < n; i++) {
if (!isFixed(GD_neato_nlist(G)[i])) {
offset += dijkstra_sgd(graph, i, terms + offset);
}
}
assert(offset == n_terms);
free_adjacency(graph);
if (Verbose) {
fprintf(stderr, " %.2f sec\n", elapsed_sec());
}
// initialise annealing schedule
float w_min = terms[0].w, w_max = terms[0].w;
for (int ij = 1; ij < n_terms; ij++) {
w_min = fminf(w_min, terms[ij].w);
w_max = fmaxf(w_max, terms[ij].w);
}
// note: Epsilon is different from MODE_KK and MODE_MAJOR as it is a minimum
// step size rather than energy threshold
// MaxIter is also different as it is a fixed number of iterations
// rather than a maximum
const double eta_max = 1.0 / w_min;
const double eta_min = Epsilon / w_max;
const double lambda = log(eta_max / eta_min) / (MaxIter - 1);
// initialise starting positions (from neatoprocs)
initial_positions(G, n);
// copy initial positions and state into temporary space for speed
double *const pos = gv_calloc(2 * n, sizeof(double));
bool *unfixed = gv_calloc(n, sizeof(bool));
for (int i = 0; i < n; i++) {
node_t *node = GD_neato_nlist(G)[i];
pos[2 * i] = ND_pos(node)[0];
pos[2 * i + 1] = ND_pos(node)[1];
unfixed[i] = !isFixed(node);
}
// perform optimisation
if (Verbose) {
fprintf(stderr, "solving model:");
start_timer();
}
rk_state rstate;
rk_seed(0, &rstate); // TODO: get seed from graph
for (int t = 0; t < MaxIter; t++) {
fisheryates_shuffle(terms, n_terms, &rstate);
const double eta = eta_max * exp(-lambda * t);
for (int ij = 0; ij < n_terms; ij++) {
// cap step size
const double mu = fmin(eta * terms[ij].w, 1);
const double dx = pos[2 * terms[ij].i] - pos[2 * terms[ij].j];
const double dy = pos[2 * terms[ij].i + 1] - pos[2 * terms[ij].j + 1];
const double mag = hypot(dx, dy);
const double r = (mu * (mag - terms[ij].d)) / (2 * mag);
const double r_x = r * dx;
const double r_y = r * dy;
if (unfixed[terms[ij].i]) {
pos[2 * terms[ij].i] -= r_x;
pos[2 * terms[ij].i + 1] -= r_y;
}
if (unfixed[terms[ij].j]) {
pos[2 * terms[ij].j] += r_x;
pos[2 * terms[ij].j + 1] += r_y;
}
}
if (Verbose) {
fprintf(stderr, " %.3f", calculate_stress(pos, terms, n_terms));
}
}
if (Verbose) {
fprintf(stderr, "\nfinished in %.2f sec\n", elapsed_sec());
}
free(terms);
// copy temporary positions back into graph_t
for (int i = 0; i < n; i++) {
node_t *node = GD_neato_nlist(G)[i];
ND_pos(node)[0] = pos[2 * i];
ND_pos(node)[1] = pos[2 * i + 1];
}
free(pos);
free(unfixed);
}
|