1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <float.h>
#include <math.h>
#include <neatogen/digcola.h>
#include <util/alloc.h>
#ifdef DIGCOLA
#include <neatogen/kkutils.h>
#include <neatogen/matrix_ops.h>
#include <neatogen/conjgrad.h>
#include <stdbool.h>
static void
standardize(double* orthog, int nvtxs)
{
double len, avg = 0;
int i;
for (i=0; i<nvtxs; i++)
avg+=orthog[i];
avg/=nvtxs;
/* centralize: */
for (i=0; i<nvtxs; i++)
orthog[i]-=avg;
/* normalize: */
len = norm(orthog, nvtxs-1);
// if we have a degenerate length, do not attempt to scale by it
if (fabs(len) < DBL_EPSILON) {
return;
}
vectors_scalar_mult(nvtxs, orthog, 1.0 / len, orthog);
}
static void
mat_mult_vec_orthog(float** mat, int dim1, int dim2, double* vec,
double* result, double* orthog)
{
/* computes mat*vec, where mat is a dim1*dim2 matrix */
int i,j;
double sum;
for (i=0; i<dim1; i++) {
sum=0;
for (j=0; j<dim2; j++) {
sum += mat[i][j]*vec[j];
}
result[i]=sum;
}
assert(orthog != NULL);
double alpha = -vectors_inner_product(dim1, result, orthog);
scadd(result, dim1 - 1, alpha, orthog);
}
static void
power_iteration_orthog(float** square_mat, int n, int neigs,
double** eigs, double* evals, double* orthog, double p_iteration_threshold)
{
// Power-Iteration with
// (I - orthog × orthogᵀ) × square_mat × (I - orthog × orthogᵀ)
int i,j;
double *tmp_vec = gv_calloc(n, sizeof(double));
double *last_vec = gv_calloc(n, sizeof(double));
double *curr_vector;
double len;
double angle;
double alpha;
int largest_index;
double largest_eval;
double tol=1-p_iteration_threshold;
if (neigs>=n) {
neigs=n;
}
for (i=0; i<neigs; i++) {
curr_vector = eigs[i];
/* guess the i-th eigen vector */
choose:
for (j=0; j<n; j++) {
curr_vector[j] = rand()%100;
}
assert(orthog != NULL);
alpha = -vectors_inner_product(n, orthog, curr_vector);
scadd(curr_vector, n - 1, alpha, orthog);
// orthogonalize against higher eigenvectors
for (j=0; j<i; j++) {
alpha = -vectors_inner_product(n, eigs[j], curr_vector);
scadd(curr_vector, n-1, alpha, eigs[j]);
}
len = norm(curr_vector, n-1);
if (len<1e-10) {
/* We have chosen a vector colinear with prvious ones */
goto choose;
}
vectors_scalar_mult(n, curr_vector, 1.0 / len, curr_vector);
do {
copy_vector(n, curr_vector, last_vec);
mat_mult_vec_orthog(square_mat,n,n,curr_vector,tmp_vec,orthog);
copy_vector(n, tmp_vec, curr_vector);
/* orthogonalize against higher eigenvectors */
for (j=0; j<i; j++) {
alpha = -vectors_inner_product(n, eigs[j], curr_vector);
scadd(curr_vector, n-1, alpha, eigs[j]);
}
len = norm(curr_vector, n-1);
if (len<1e-10) {
/* We have reached the null space (e.vec. associated
* with e.val. 0)
*/
goto exit;
}
vectors_scalar_mult(n, curr_vector, 1.0 / len, curr_vector);
angle = vectors_inner_product(n, curr_vector, last_vec);
} while (fabs(angle)<tol);
/* the Rayleigh quotient (up to errors due to orthogonalization):
* u*(A*u)/||A*u||)*||A*u||, where u=last_vec, and ||u||=1
*/
evals[i]=angle*len;
}
exit:
for (; i<neigs; i++) {
/* compute the smallest eigenvector, which are
* probably associated with eigenvalue 0 and for
* which power-iteration is dangerous
*/
curr_vector = eigs[i];
/* guess the i-th eigen vector */
for (j=0; j<n; j++)
curr_vector[j] = rand()%100;
/* orthogonalize against higher eigenvectors */
for (j=0; j<i; j++) {
alpha = -vectors_inner_product(n, eigs[j], curr_vector);
scadd(curr_vector, n-1, alpha, eigs[j]);
}
len = norm(curr_vector, n-1);
vectors_scalar_mult(n, curr_vector, 1.0 / len, curr_vector);
evals[i]=0;
}
/* sort vectors by their evals, for overcoming possible mis-convergence: */
for (i=0; i<neigs-1; i++) {
largest_index=i;
largest_eval=evals[largest_index];
for (j=i+1; j<neigs; j++) {
if (largest_eval<evals[j]) {
largest_index=j;
largest_eval=evals[largest_index];
}
}
if (largest_index!=i) { // exchange eigenvectors:
copy_vector(n, eigs[i], tmp_vec);
copy_vector(n, eigs[largest_index], eigs[i]);
copy_vector(n, tmp_vec, eigs[largest_index]);
evals[largest_index]=evals[i];
evals[i]=largest_eval;
}
}
free (tmp_vec); free (last_vec);
}
static float*
compute_avgs(DistType** Dij, int n, float* all_avg)
{
float* row_avg = gv_calloc(n, sizeof(float));
int i,j;
double sum=0, sum_row;
for (i=0; i<n; i++) {
sum_row=0;
for (j=0; j<n; j++) {
sum+=(double)Dij[i][j]*(double)Dij[i][j];
sum_row+=(double)Dij[i][j]*(double)Dij[i][j];
}
row_avg[i]=(float)sum_row/n;
}
*all_avg=(float)sum/(n*n);
return row_avg;
}
static float**
compute_Bij(DistType** Dij, int n)
{
int i,j;
float *storage = gv_calloc(n * n, sizeof(float));
float **Bij = gv_calloc(n, sizeof(float *));
float* row_avg;
float all_avg;
for (i=0; i<n; i++)
Bij[i] = storage+i*n;
row_avg = compute_avgs(Dij, n, &all_avg);
for (i=0; i<n; i++) {
for (j=0; j<=i; j++) {
Bij[i][j]=-(float)Dij[i][j]*Dij[i][j]+row_avg[i]+row_avg[j]-all_avg;
Bij[j][i]=Bij[i][j];
}
}
free (row_avg);
return Bij;
}
static void
CMDS_orthog(int n, int dim, double** eigs, double tol,
double* orthog, DistType** Dij)
{
int i,j;
float** Bij = compute_Bij(Dij, n);
double *evals = gv_calloc(dim, sizeof(double));
assert(orthog != NULL);
double *orthog_aux = gv_calloc(n, sizeof(double));
for (i=0; i<n; i++) {
orthog_aux[i]=orthog[i];
}
standardize(orthog_aux,n);
power_iteration_orthog(Bij, n, dim, eigs, evals, orthog_aux, tol);
for (i=0; i<dim; i++) {
for (j=0; j<n; j++) {
eigs[i][j]*=sqrt(fabs(evals[i]));
}
}
free (Bij[0]); free (Bij);
free (evals); free (orthog_aux);
}
#define SCALE_FACTOR 256
int IMDS_given_dim(vtx_data* graph, int n, double* given_coords,
double* new_coords, double conj_tol)
{
int iterations2;
int i,j, rv = 0;
DistType** Dij;
double* x = given_coords;
double uniLength;
double* y = new_coords;
float **lap = gv_calloc(n, sizeof(float *));
float degree;
double pos_i;
double *balance = gv_calloc(n, sizeof(double));
double b;
bool converged;
Dij = compute_apsp(graph, n);
/* scaling up the distances to enable an 'sqrt' operation later
* (in case distances are integers)
*/
for (i=0; i<n; i++)
for (j=0; j<n; j++)
Dij[i][j]*=SCALE_FACTOR;
assert(x!=NULL);
{
double sum1, sum2;
for (sum1=sum2=0,i=1; i<n; i++) {
for (j=0; j<i; j++) {
sum1+=1.0/(Dij[i][j])*fabs(x[i]-x[j]);
sum2+=1.0/(Dij[i][j]*Dij[i][j])*fabs(x[i]-x[j])*fabs(x[i]-x[j]);
}
}
uniLength = isinf(sum2) ? 0 : sum1 / sum2;
for (i=0; i<n; i++)
x[i]*=uniLength;
}
/* smart ini: */
CMDS_orthog(n, 1, &y, conj_tol, x, Dij);
/* Compute Laplacian: */
float *f_storage = gv_calloc(n * n, sizeof(float));
for (i=0; i<n; i++) {
lap[i]=f_storage+i*n;
degree=0;
for (j=0; j<n; j++) {
if (j==i)
continue;
degree-=lap[i][j]=-1.0f/((float)Dij[i][j]*(float)Dij[i][j]); // w_{ij}
}
lap[i][i]=degree;
}
/* compute residual distances */
/* if (x!=NULL) */
{
double diff;
for (i=1; i<n; i++) {
pos_i=x[i];
for (j=0; j<i; j++) {
diff=(double)Dij[i][j]*(double)Dij[i][j]-(pos_i-x[j])*(pos_i-x[j]);
Dij[i][j]=Dij[j][i]=diff>0 ? (DistType)sqrt(diff) : 0;
}
}
}
/* Compute the balance vector: */
for (i=0; i<n; i++) {
pos_i=y[i];
balance[i]=0;
for (j=0; j<n; j++) {
if (j==i)
continue;
if (pos_i>=y[j]) {
balance[i]+=Dij[i][j]*(-lap[i][j]); // w_{ij}*delta_{ij}
}
else {
balance[i]-=Dij[i][j]*(-lap[i][j]); // w_{ij}*delta_{ij}
}
}
}
for (converged=false,iterations2=0; iterations2<200 && !converged; iterations2++) {
if (conjugate_gradient_f(lap, y, balance, n, conj_tol, n, true) < 0) {
rv = 1;
goto cleanup;
}
converged = true;
for (i=0; i<n; i++) {
pos_i=y[i];
b=0;
for (j=0; j<n; j++) {
if (j==i)
continue;
if (pos_i>=y[j]) {
b+=Dij[i][j]*(-lap[i][j]);
}
else {
b-=Dij[i][j]*(-lap[i][j]);
}
}
if ((b != balance[i]) && (fabs(1-b/balance[i])>1e-5)) {
converged = false;
balance[i]=b;
}
}
}
for (i = 0; !(fabs(uniLength) < DBL_EPSILON) && i < n; i++) {
x[i] /= uniLength;
y[i] /= uniLength;
}
cleanup:
free (Dij[0]); free (Dij);
free (lap[0]); free (lap);
free (balance);
return rv;
}
#endif /* DIGCOLA */
|