1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include "config.h"
#include <assert.h>
#include <common/boxes.h>
#include <common/geomprocs.h>
#include <limits.h>
#include <ortho/partition.h>
#include <ortho/trap.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <util/alloc.h>
#include <util/bitarray.h>
#include <util/gv_math.h>
#include <util/list.h>
#include <util/prisize_t.h>
#ifndef DEBUG
#define DEBUG 0
#endif
#define NPOINTS 4 /* only rectangles */
#define TR_FROM_UP 1 /* for traverse-direction */
#define TR_FROM_DN 2
#define SP_SIMPLE_LRUP 1 /* for splitting trapezoids */
#define SP_SIMPLE_LRDN 2
#define SP_2UP_2DN 3
#define SP_2UP_LEFT 4
#define SP_2UP_RIGHT 5
#define SP_2DN_LEFT 6
#define SP_2DN_RIGHT 7
#define SP_NOSPLIT -1
#define DOT(v0, v1) ((v0).x * (v1).x + (v0).y * (v1).y)
#define CROSS_SINE(v0, v1) ((v0).x * (v1).y - (v1).x * (v0).y)
#define LENGTH(v0) hypot((v0).x, (v0).y)
#ifndef HAVE_SRAND48
#define srand48 srand
#endif
#ifdef _WIN32
extern double drand48(void);
#endif
typedef struct {
int vnum;
int next; /* Circularly linked list */
int prev; /* describing the monotone */
int marked; /* polygon */
} monchain_t;
typedef struct {
pointf pt;
int vnext[4]; /* next vertices for the 4 chains */
int vpos[4]; /* position of v in the 4 chains */
int nextfree;
} vertexchain_t;
static int chain_idx;
static size_t mon_idx;
/* Table to hold all the monotone */
/* polygons . Each monotone polygon */
/* is a circularly linked list */
static monchain_t* mchain;
/* chain init. information. This */
/* is used to decide which */
/* monotone polygon to split if */
/* there are several other */
/* polygons touching at the same */
/* vertex */
static vertexchain_t* vert;
/* contains position of any vertex in */
/* the monotone chain for the polygon */
static int* mon;
/* return a new mon structure from the table */
#define newmon() (++mon_idx)
/* return a new chain element from the table */
#define new_chain_element() (++chain_idx)
static void
convert (boxf bb, int flip, int ccw, pointf* pts)
{
pts[0] = bb.LL;
pts[2] = bb.UR;
if (ccw) {
pts[1].x = bb.UR.x;
pts[1].y = bb.LL.y;
pts[3].x = bb.LL.x;
pts[3].y = bb.UR.y;
}
else {
pts[1].x = bb.LL.x;
pts[1].y = bb.UR.y;
pts[3].x = bb.UR.x;
pts[3].y = bb.LL.y;
}
if (flip) {
int i;
for (i = 0; i < NPOINTS; i++) {
pts[i] = perp(pts[i]);
}
}
}
static int
store (segment_t* seg, int first, pointf* pts)
{
int i, last = first + NPOINTS - 1;
int j = 0;
for (i = first; i <= last; i++, j++) {
if (i == first) {
seg[i].next = first+1;
seg[i].prev = last;
}
else if (i == last) {
seg[i].next = first;
seg[i].prev = last-1;
}
else {
seg[i].next = i+1;
seg[i].prev = i-1;
}
seg[i].is_inserted = false;
seg[seg[i].prev].v1 = seg[i].v0 = pts[j];
}
return (last+1);
}
static void genSegments(cell *cells, size_t ncells, boxf bb, segment_t *seg,
int flip) {
int i = 1;
pointf pts[4];
convert (bb, flip, 1, pts);
i = store (seg, i, pts);
for (size_t j = 0; j < ncells; j++) {
convert (cells[j].bb, flip, 0, pts);
i = store (seg, i, pts);
}
}
/* Generate a random permutation of the segments 1..n */
static void generateRandomOrdering(size_t n, int *permute) {
for (size_t i = 0; i < n; i++) {
assert(i < INT_MAX);
permute[i] = (int)i + 1;
}
for (size_t i = 0; i < n; i++) {
const size_t j = (size_t)((double)i + drand48() * (double)(n - i));
if (j != i) {
SWAP(&permute[i], &permute[j]);
}
}
}
/* Function returns true if the trapezoid lies inside the polygon */
static bool
inside_polygon (trap_t *t, segment_t* seg)
{
int rseg = t->rseg;
if (!t->is_valid)
return false;
if (t->lseg <= 0 || t->rseg <= 0)
return false;
if ((!is_valid_trap(t->u0) && !is_valid_trap(t->u1)) || (!is_valid_trap(t->d0) && !is_valid_trap(t->d1))) // triangle
return greater_than(seg[rseg].v1, seg[rseg].v0);
return false;
}
static double
get_angle (pointf *vp0, pointf *vpnext, pointf *vp1)
{
pointf v0, v1;
v0.x = vpnext->x - vp0->x;
v0.y = vpnext->y - vp0->y;
v1.x = vp1->x - vp0->x;
v1.y = vp1->y - vp0->y;
if (CROSS_SINE(v0, v1) >= 0) /* sine is positive */
return DOT(v0, v1)/LENGTH(v0)/LENGTH(v1);
else
return -1.0 * DOT(v0, v1)/LENGTH(v0)/LENGTH(v1) - 2;
}
/* (v0, v1) is the new diagonal to be added to the polygon. Find which */
/* chain to use and return the positions of v0 and v1 in p and q */
static void
get_vertex_positions (int v0, int v1, int *ip, int *iq)
{
vertexchain_t *vp0, *vp1;
int i;
double angle, temp;
int tp = 0, tq = 0;
vp0 = &vert[v0];
vp1 = &vert[v1];
/* p is identified as follows. Scan from (v0, v1) rightwards till */
/* you hit the first segment starting from v0. That chain is the */
/* chain of our interest */
angle = -4.0;
for (i = 0; i < 4; i++)
{
if (vp0->vnext[i] <= 0)
continue;
if ((temp = get_angle(&vp0->pt, &(vert[vp0->vnext[i]].pt),
&vp1->pt)) > angle)
{
angle = temp;
tp = i;
}
}
*ip = tp;
/* Do similar actions for q */
angle = -4.0;
for (i = 0; i < 4; i++)
{
if (vp1->vnext[i] <= 0)
continue;
if ((temp = get_angle(&vp1->pt, &(vert[vp1->vnext[i]].pt),
&vp0->pt)) > angle)
{
angle = temp;
tq = i;
}
}
*iq = tq;
}
/* v0 and v1 are specified in anti-clockwise order with respect to
* the current monotone polygon mcur. Split the current polygon into
* two polygons using the diagonal (v0, v1)
*/
static size_t make_new_monotone_poly(size_t mcur, int v0, int v1) {
int p, q, ip, iq;
const size_t mnew = newmon();
int i, j, nf0, nf1;
vertexchain_t *vp0, *vp1;
vp0 = &vert[v0];
vp1 = &vert[v1];
get_vertex_positions(v0, v1, &ip, &iq);
p = vp0->vpos[ip];
q = vp1->vpos[iq];
/* At this stage, we have got the positions of v0 and v1 in the */
/* desired chain. Now modify the linked lists */
i = new_chain_element(); /* for the new list */
j = new_chain_element();
mchain[i].vnum = v0;
mchain[j].vnum = v1;
mchain[i].next = mchain[p].next;
mchain[mchain[p].next].prev = i;
mchain[i].prev = j;
mchain[j].next = i;
mchain[j].prev = mchain[q].prev;
mchain[mchain[q].prev].next = j;
mchain[p].next = q;
mchain[q].prev = p;
nf0 = vp0->nextfree;
nf1 = vp1->nextfree;
vp0->vnext[ip] = v1;
vp0->vpos[nf0] = i;
vp0->vnext[nf0] = mchain[mchain[i].next].vnum;
vp1->vpos[nf1] = j;
vp1->vnext[nf1] = v0;
vp0->nextfree++;
vp1->nextfree++;
#if DEBUG > 0
fprintf(stderr, "make_poly: mcur = %" PRISIZE_T ", (v0, v1) = (%d, %d)\n",
mcur, v0, v1);
fprintf(stderr, "next posns = (p, q) = (%d, %d)\n", p, q);
#endif
mon[mcur] = p;
mon[mnew] = i;
return mnew;
}
/* recursively visit all the trapezoids */
static void traverse_polygon(bitarray_t *visited, boxes_t *decomp,
segment_t *seg, traps_t *tr, size_t mcur,
size_t trnum, size_t from, int flip, int dir) {
size_t mnew;
int v0, v1;
if (!is_valid_trap(trnum) || bitarray_get(*visited, trnum))
return;
trap_t *t = LIST_AT(tr, trnum);
bitarray_set(visited, trnum, true);
if (t->hi.y > t->lo.y + C_EPS && fp_equal(seg[t->lseg].v0.x, seg[t->lseg].v1.x) &&
fp_equal(seg[t->rseg].v0.x, seg[t->rseg].v1.x)) {
boxf newbox = {0};
if (flip) {
newbox.LL.x = t->lo.y;
newbox.LL.y = -seg[t->rseg].v0.x;
newbox.UR.x = t->hi.y;
newbox.UR.y = -seg[t->lseg].v0.x;
} else {
newbox.LL.x = seg[t->lseg].v0.x;
newbox.LL.y = t->lo.y;
newbox.UR.x = seg[t->rseg].v0.x;
newbox.UR.y = t->hi.y;
}
LIST_APPEND(decomp, newbox);
}
/* We have much more information available here. */
/* rseg: goes upwards */
/* lseg: goes downwards */
/* Initially assume that dir = TR_FROM_DN (from the left) */
/* Switch v0 and v1 if necessary afterwards */
/* special cases for triangles with cusps at the opposite ends. */
/* take care of this first */
if (!is_valid_trap(t->u0) && !is_valid_trap(t->u1)) {
if (is_valid_trap(t->d0) && is_valid_trap(t->d1)) { // downward opening triangle
v0 = LIST_GET(tr, t->d1).lseg;
v1 = t->lseg;
if (from == t->d1)
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon (visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon (visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
}
}
else
{
/* Just traverse all neighbours */
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
}
}
else if (!is_valid_trap(t->d0) && !is_valid_trap(t->d1)) {
if (is_valid_trap(t->u0) && is_valid_trap(t->u1)) { // upward opening triangle
v0 = t->rseg;
v1 = LIST_GET(tr, t->u0).rseg;
if (from == t->u1)
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
}
}
else
{
/* Just traverse all neighbours */
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
}
}
else if (is_valid_trap(t->u0) && is_valid_trap(t->u1)) {
if (is_valid_trap(t->d0) && is_valid_trap(t->d1)) { // downward + upward cusps
v0 = LIST_GET(tr, t->d1).lseg;
v1 = LIST_GET(tr, t->u0).rseg;
if ((dir == TR_FROM_DN && t->d1 == from) ||
(dir == TR_FROM_UP && t->u1 == from))
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
}
}
else /* only downward cusp */
{
if (equal_to(t->lo, seg[t->lseg].v1)) {
v0 = LIST_GET(tr, t->u0).rseg;
v1 = seg[t->lseg].next;
if (dir == TR_FROM_UP && t->u0 == from)
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
}
}
else
{
v0 = t->rseg;
v1 = LIST_GET(tr, t->u0).rseg;
if (dir == TR_FROM_UP && t->u1 == from)
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
}
}
}
}
else if (is_valid_trap(t->u0) || is_valid_trap(t->u1)) { // no downward cusp
if (is_valid_trap(t->d0) && is_valid_trap(t->d1)) { // only upward cusp
if (equal_to(t->hi, seg[t->lseg].v0)) {
v0 = LIST_GET(tr, t->d1).lseg;
v1 = t->lseg;
if (!(dir == TR_FROM_DN && t->d0 == from))
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
}
}
else
{
v0 = LIST_GET(tr, t->d1).lseg;
v1 = seg[t->rseg].next;
if (dir == TR_FROM_DN && t->d1 == from)
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
}
}
}
else /* no cusp */
{
if (equal_to(t->hi, seg[t->lseg].v0) && equal_to(t->lo, seg[t->rseg].v0)) {
v0 = t->rseg;
v1 = t->lseg;
if (dir == TR_FROM_UP)
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
}
}
else if (equal_to(t->hi, seg[t->rseg].v1) &&
equal_to(t->lo, seg[t->lseg].v1)) {
v0 = seg[t->rseg].next;
v1 = seg[t->lseg].next;
if (dir == TR_FROM_UP)
{
mnew = make_new_monotone_poly(mcur, v1, v0);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
}
else
{
mnew = make_new_monotone_poly(mcur, v0, v1);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
}
}
else /* no split possible */
{
traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
}
}
}
}
static void
monotonate_trapezoids(int nsegs, segment_t *seg, traps_t *tr,
int flip, boxes_t *decomp) {
int i;
bitarray_t visited = bitarray_new(LIST_SIZE(tr));
mchain = gv_calloc(LIST_SIZE(tr), sizeof(monchain_t));
vert = gv_calloc(nsegs + 1, sizeof(vertexchain_t));
mon = gv_calloc(nsegs, sizeof(int));
/* First locate a trapezoid which lies inside the polygon */
/* and which is triangular */
size_t j;
for (j = 0; j < LIST_SIZE(tr); j++)
if (inside_polygon(LIST_AT(tr, j), seg)) break;
const size_t tr_start = j;
/* Initialise the mon data-structure and start spanning all the */
/* trapezoids within the polygon */
for (i = 1; i <= nsegs; i++) {
mchain[i].prev = seg[i].prev;
mchain[i].next = seg[i].next;
mchain[i].vnum = i;
vert[i].pt = seg[i].v0;
vert[i].vnext[0] = seg[i].next; /* next vertex */
vert[i].vpos[0] = i; /* locn. of next vertex */
vert[i].nextfree = 1;
}
chain_idx = nsegs;
mon_idx = 0;
mon[0] = 1; /* position of any vertex in the first */
/* chain */
/* traverse the polygon */
if (is_valid_trap(LIST_GET(tr, tr_start).u0))
traverse_polygon(&visited, decomp, seg, tr, 0, tr_start,
LIST_GET(tr, tr_start).u0, flip, TR_FROM_UP);
else if (is_valid_trap(LIST_GET(tr, tr_start).d0))
traverse_polygon(&visited, decomp, seg, tr, 0, tr_start,
LIST_GET(tr, tr_start).d0, flip, TR_FROM_DN);
bitarray_reset(&visited);
free (mchain);
free (vert);
free (mon);
}
static bool rectIntersect(boxf *d, const boxf r0, const boxf r1) {
double t = fmax(r0.LL.x, r1.LL.x);
d->UR.x = fmin(r0.UR.x, r1.UR.x);
d->LL.x = t;
t = fmax(r0.LL.y, r1.LL.y);
d->UR.y = fmin(r0.UR.y, r1.UR.y);
d->LL.y = t;
return !(d->LL.x >= d->UR.x || d->LL.y >= d->UR.y);
}
#if DEBUG > 1
static void
dumpTrap (trap_t* tr, int n)
{
int i;
for (i = 1; i <= n; i++) {
tr++;
fprintf(stderr, "%d : %d %d (%f,%f) (%f,%f) %" PRISIZE_T " %" PRISIZE_T
" %" PRISIZE_T " %" PRISIZE_T "\n", i, tr->lseg, tr->rseg,
tr->hi.x, tr->hi.y, tr->lo.x, tr->lo.y, tr->u0, tr->u1, tr->d0,
tr->d1);
fprintf(stderr, " %" PRISIZE_T " %" PRISIZE_T " %d %s\n", tr->sink,
tr->usave, tr->uside, tr->is_valid ? "valid" : "invalid");
}
fprintf (stderr, "====\n");
}
static void
dumpSegs (segment_t* sg, int n)
{
int i;
for (i = 1; i <= n; i++) {
sg++;
fprintf(stderr, "%d : (%f,%f) (%f,%f) %d %" PRISIZE_T " %" PRISIZE_T
" %d %d\n", i, sg->v0.x, sg->v0.y, sg->v1.x, sg->v1.y,
(int)sg->is_inserted, sg->root0, sg->root1, sg->next, sg->prev);
}
fprintf (stderr, "====\n");
}
#endif
boxf *partition(cell *cells, size_t ncells, size_t *nrects, boxf bb) {
const size_t nsegs = 4 * (ncells + 1);
segment_t* segs = gv_calloc(nsegs + 1, sizeof(segment_t));
int* permute = gv_calloc(nsegs, sizeof(int));
if (DEBUG) {
fprintf(stderr, "cells = %" PRISIZE_T " segs = %" PRISIZE_T
" traps = dynamic\n", ncells, nsegs);
}
genSegments(cells, ncells, bb, segs, 0);
if (DEBUG) {
fprintf(stderr, "%" PRISIZE_T "\n\n", ncells + 1);
for (size_t i = 1; i <= nsegs; i++) {
if (i%4 == 1) fprintf(stderr, "4\n");
fprintf (stderr, "%f %f\n", segs[i].v0.x, segs[i].v0.y);
if (i%4 == 0) fprintf(stderr, "\n");
}
}
srand48(173);
generateRandomOrdering(nsegs, permute);
assert(nsegs <= INT_MAX);
traps_t hor_traps = construct_trapezoids((int)nsegs, segs, permute);
if (DEBUG) {
fprintf(stderr, "hor traps = %" PRISIZE_T "\n", LIST_SIZE(&hor_traps));
}
boxes_t hor_decomp = {0};
monotonate_trapezoids((int)nsegs, segs, &hor_traps, 0, &hor_decomp);
LIST_FREE(&hor_traps);
genSegments(cells, ncells, bb, segs, 1);
generateRandomOrdering(nsegs, permute);
traps_t ver_traps = construct_trapezoids((int)nsegs, segs, permute);
if (DEBUG) {
fprintf(stderr, "ver traps = %" PRISIZE_T "\n", LIST_SIZE(&ver_traps));
}
boxes_t vert_decomp = {0};
monotonate_trapezoids((int)nsegs, segs, &ver_traps, 1, &vert_decomp);
LIST_FREE(&ver_traps);
boxes_t rs = {0};
for (size_t i = 0; i < LIST_SIZE(&vert_decomp); ++i)
for (size_t j = 0; j < LIST_SIZE(&hor_decomp); ++j) {
boxf newbox = {0};
if (rectIntersect(&newbox, LIST_GET(&vert_decomp, i),
LIST_GET(&hor_decomp, j)))
LIST_APPEND(&rs, newbox);
}
free (segs);
free (permute);
LIST_FREE(&hor_decomp);
LIST_FREE(&vert_decomp);
boxf *ret;
LIST_DETACH(&rs, &ret, nrects);
return ret;
}
|