1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <cgraph/cgraph.h>
#include <common/render.h>
#include <common/utils.h>
#include <limits.h>
#include <pack/pack.h>
#include <stdbool.h>
#include <stdlib.h>
#include <util/agxbuf.h>
#include <util/alloc.h>
#include <util/gv_ctype.h>
#include <util/list.h>
#include <util/prisize_t.h>
typedef LIST(Agnode_t *) node_stack_t;
typedef struct {
node_stack_t data;
void (*actionfn)(Agnode_t *, void *);
bool (*markfn)(Agnode_t *, int);
} stk_t;
/// does `n` have a mark set?
static bool marked(const stk_t *stk, Agnode_t *n) { return stk->markfn(n, -1); }
/// set a mark on `n`
static void mark(const stk_t *stk, Agnode_t *n) { stk->markfn(n, 1); }
/// unset a mark on `n`
static void unmark(const stk_t *stk, Agnode_t *n) { stk->markfn(n, 0); }
static void initStk(stk_t *sp, void (*actionfn)(Agnode_t *, void *),
bool (*markfn)(Agnode_t *, int)) {
sp->data = (node_stack_t){0};
sp->actionfn = actionfn;
sp->markfn = markfn;
}
static void freeStk(stk_t *sp) { LIST_FREE(&sp->data); }
static void push(stk_t *sp, Agnode_t *np) {
mark(sp, np);
LIST_PUSH_BACK(&sp->data, np);
}
static Agnode_t *pop(stk_t *sp) {
if (LIST_IS_EMPTY(&sp->data)) {
return NULL;
}
return LIST_POP_BACK(&sp->data);
}
static size_t dfs(Agraph_t *g, Agnode_t *n, void *state, stk_t *stk) {
Agedge_t *e;
Agnode_t *other;
size_t cnt = 0;
push(stk, n);
while ((n = pop(stk))) {
cnt++;
if (stk->actionfn)
stk->actionfn(n, state);
for (e = agfstedge(g, n); e; e = agnxtedge(g, e, n)) {
if ((other = agtail(e)) == n)
other = aghead(e);
if (!marked(stk, other))
push(stk, other);
}
}
return cnt;
}
static bool isLegal(const char *p) {
char c;
while ((c = *p++)) {
if (c != '_' && !gv_isalnum(c))
return false;
}
return true;
}
static void insertFn(Agnode_t *n, void *state) { agsubnode(state, n, 1); }
static bool markFn(Agnode_t *n, int v) {
if (v < 0)
return ND_mark(n) != 0;
const size_t ret = ND_mark(n);
ND_mark(n) = v != 0;
return ret != 0;
}
static void setPrefix(agxbuf *xb, const char *pfx) {
if (!pfx || !isLegal(pfx)) {
pfx = "_cc_";
}
agxbput(xb, pfx);
}
/* pccomps:
* Return an array of subgraphs consisting of the connected
* components of graph g. The number of components is returned in ncc.
* All pinned nodes are in one component.
* If pfx is non-null and a legal graph name, we use it as the prefix
* for the name of the subgraphs created. If not, a simple default is used.
* If pinned is non-null, *pinned set to 1 if pinned nodes found
* and the first component is the one containing the pinned nodes.
* Note that the component subgraphs do not contain any edges. These must
* be obtained from the root graph.
* Return NULL if graph is empty.
*/
Agraph_t **pccomps(Agraph_t *g, size_t *ncc, char *pfx, bool *pinned) {
agxbuf name = {0};
Agraph_t *out = NULL;
Agnode_t *n;
bool pin = false;
stk_t stk;
if (agnnodes(g) == 0) {
*ncc = 0;
return NULL;
}
LIST(Agraph_t *) ccs = {0};
initStk(&stk, insertFn, markFn);
for (n = agfstnode(g); n; n = agnxtnode(g, n))
unmark(&stk, n);
/* Component with pinned nodes */
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
if (marked(&stk, n) || !isPinned(n))
continue;
if (!out) {
setPrefix(&name, pfx);
agxbprint(&name, "%" PRISIZE_T, LIST_SIZE(&ccs));
out = agsubg(g, agxbuse(&name), 1);
agbindrec(out, "Agraphinfo_t", sizeof(Agraphinfo_t),
true); // node custom data
LIST_APPEND(&ccs, out);
pin = true;
}
dfs(g, n, out, &stk);
}
/* Remaining nodes */
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
if (marked(&stk, n))
continue;
setPrefix(&name, pfx);
agxbprint(&name, "%" PRISIZE_T, LIST_SIZE(&ccs));
out = agsubg(g, agxbuse(&name), 1);
agbindrec(out, "Agraphinfo_t", sizeof(Agraphinfo_t),
true); // node custom data
dfs(g, n, out, &stk);
LIST_APPEND(&ccs, out);
}
freeStk(&stk);
agxbfree(&name);
*pinned = pin;
Agraph_t **ret;
LIST_DETACH(&ccs, &ret, ncc);
return ret;
}
/* ccomps:
* Return an array of subgraphs consisting of the connected
* components of graph g. The number of components is returned in ncc.
* If pfx is non-null and a legal graph name, we use it as the prefix
* for the name of the subgraphs created. If not, a simple default is used.
* Note that the component subgraphs do not contain any edges. These must
* be obtained from the root graph.
* Returns NULL on error or if graph is empty.
*/
Agraph_t **ccomps(Agraph_t *g, size_t *ncc, char *pfx) {
agxbuf name = {0};
Agraph_t *out;
Agnode_t *n;
stk_t stk;
if (agnnodes(g) == 0) {
*ncc = 0;
return NULL;
}
LIST(Agraph_t *) ccs = {0};
initStk(&stk, insertFn, markFn);
for (n = agfstnode(g); n; n = agnxtnode(g, n))
unmark(&stk, n);
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
if (marked(&stk, n))
continue;
setPrefix(&name, pfx);
agxbprint(&name, "%" PRISIZE_T, LIST_SIZE(&ccs));
out = agsubg(g, agxbuse(&name), 1);
agbindrec(out, "Agraphinfo_t", sizeof(Agraphinfo_t),
true); // node custom data
dfs(g, n, out, &stk);
LIST_APPEND(&ccs, out);
}
freeStk(&stk);
agxbfree(&name);
Agraph_t **ret;
LIST_DETACH(&ccs, &ret, ncc);
return ret;
}
typedef struct {
Agrec_t h;
char cc_subg; /* true iff subgraph corresponds to a component */
} ccgraphinfo_t;
typedef struct {
Agrec_t h;
char mark;
union {
Agraph_t *g;
Agnode_t *n;
void *v;
} ptr;
} ccgnodeinfo_t;
#define GRECNAME "ccgraphinfo"
#define NRECNAME "ccgnodeinfo"
#define GD_cc_subg(g) (((ccgraphinfo_t *)aggetrec(g, GRECNAME, 0))->cc_subg)
#ifdef DEBUG
Agnode_t *dnodeOf(Agnode_t *v) {
ccgnodeinfo_t *ip = (ccgnodeinfo_t *)aggetrec(v, NRECNAME, 0);
if (ip)
return ip->ptr.n;
fprintf(stderr, "nodeinfo undefined\n");
return NULL;
}
void dnodeSet(Agnode_t *v, Agnode_t *n) {
((ccgnodeinfo_t *)aggetrec(v, NRECNAME, 0))->ptr.n = n;
}
#else
#define dnodeOf(v) (((ccgnodeinfo_t *)aggetrec(v, NRECNAME, 0))->ptr.n)
#define dnodeSet(v, w) (((ccgnodeinfo_t *)aggetrec(v, NRECNAME, 0))->ptr.n = w)
#endif
#define ptrOf(np) (((ccgnodeinfo_t *)((np)->base.data))->ptr.v)
#define nodeOf(np) (((ccgnodeinfo_t *)((np)->base.data))->ptr.n)
#define clustOf(np) (((ccgnodeinfo_t *)((np)->base.data))->ptr.g)
#define clMark(n) (((ccgnodeinfo_t *)(n->base.data))->mark)
/* deriveClusters:
* Construct nodes in derived graph corresponding top-level clusters.
* Since a cluster might be wrapped in a subgraph, we need to traverse
* down into the tree of subgraphs
*/
static void deriveClusters(Agraph_t *dg, Agraph_t *g) {
Agraph_t *subg;
Agnode_t *dn;
Agnode_t *n;
for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) {
if (is_a_cluster(subg)) {
dn = agnode(dg, agnameof(subg), 1);
agbindrec(dn, NRECNAME, sizeof(ccgnodeinfo_t), true);
clustOf(dn) = subg;
for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) {
if (dnodeOf(n)) {
fprintf(stderr,
"Error: node \"%s\" belongs to two non-nested clusters "
"\"%s\" and \"%s\"\n",
agnameof(n), agnameof(subg), agnameof(dnodeOf(n)));
}
dnodeSet(n, dn);
}
} else {
deriveClusters(dg, subg);
}
}
}
/* deriveGraph:
* Create derived graph dg of g where nodes correspond to top-level nodes
* or clusters, and there is an edge in dg if there is an edge in g
* between any nodes in the respective clusters.
*/
static Agraph_t *deriveGraph(Agraph_t *g) {
Agraph_t *dg;
Agnode_t *dn;
Agnode_t *n;
dg = agopen("dg", Agstrictundirected, NULL);
deriveClusters(dg, g);
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
if (dnodeOf(n))
continue;
dn = agnode(dg, agnameof(n), 1);
agbindrec(dn, NRECNAME, sizeof(ccgnodeinfo_t), true);
nodeOf(dn) = n;
dnodeSet(n, dn);
}
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
Agedge_t *e;
Agnode_t *hd;
Agnode_t *tl = dnodeOf(n);
for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
hd = aghead(e);
hd = dnodeOf(hd);
if (hd == tl)
continue;
if (hd > tl)
agedge(dg, tl, hd, NULL, 1);
else
agedge(dg, hd, tl, NULL, 1);
}
}
return dg;
}
/* unionNodes:
* Add all nodes in cluster nodes of dg to g
*/
static void unionNodes(Agraph_t *dg, Agraph_t *g) {
Agnode_t *n;
Agnode_t *dn;
Agraph_t *clust;
for (dn = agfstnode(dg); dn; dn = agnxtnode(dg, dn)) {
if (AGTYPE(ptrOf(dn)) == AGNODE) {
agsubnode(g, nodeOf(dn), 1);
} else {
clust = clustOf(dn);
for (n = agfstnode(clust); n; n = agnxtnode(clust, n))
agsubnode(g, n, 1);
}
}
}
static bool clMarkFn(Agnode_t *n, int v) {
int ret;
if (v < 0)
return clMark(n) != 0;
ret = clMark(n);
clMark(n) = (char)v;
return ret != 0;
}
typedef struct {
Agrec_t h;
Agraph_t *orig;
} orig_t;
#define ORIG_REC "orig"
Agraph_t *mapClust(Agraph_t *cl) {
orig_t *op = (orig_t *)aggetrec(cl, ORIG_REC, 0);
assert(op);
return op->orig;
}
/* projectG:
* If any nodes of subg are in g, create a subgraph of g
* and fill it with all nodes of subg in g and their induced
* edges in subg. Copy the attributes of subg to g. Return the subgraph.
* If not, return null.
* If subg is a cluster, the new subgraph will contain a pointer to it
* in the record "orig".
*/
static Agraph_t *projectG(Agraph_t *subg, Agraph_t *g, int inCluster) {
Agraph_t *proj = NULL;
Agnode_t *n;
Agnode_t *m;
orig_t *op;
for (n = agfstnode(subg); n; n = agnxtnode(subg, n)) {
if ((m = agfindnode(g, agnameof(n)))) {
if (proj == NULL) {
proj = agsubg(g, agnameof(subg), 1);
}
agsubnode(proj, m, 1);
}
}
if (!proj && inCluster) {
proj = agsubg(g, agnameof(subg), 1);
}
if (proj) {
(void)graphviz_node_induce(proj, subg);
agcopyattr(subg, proj);
if (is_a_cluster(proj)) {
op = agbindrec(proj, ORIG_REC, sizeof(orig_t), false);
op->orig = subg;
}
}
return proj;
}
/* subgInduce:
* Project subgraphs of root graph on subgraph.
* If non-empty, add to subgraph.
*/
static void subgInduce(Agraph_t *root, Agraph_t *g, int inCluster) {
Agraph_t *subg;
Agraph_t *proj;
int in_cluster;
for (subg = agfstsubg(root); subg; subg = agnxtsubg(subg)) {
if (GD_cc_subg(subg))
continue;
if ((proj = projectG(subg, g, inCluster))) {
in_cluster = (inCluster || is_a_cluster(subg));
subgInduce(subg, proj, in_cluster);
}
}
}
static void subGInduce(Agraph_t *g, Agraph_t *out) { subgInduce(g, out, 0); }
/* cccomps:
* Decompose g into "connected" components, where nodes are connected
* either by an edge or by being in the same cluster. The components
* are returned in an array of subgraphs. ncc indicates how many components
* there are. The subgraphs use the prefix pfx in their names, if non-NULL.
* Note that cluster subgraph of the main graph, corresponding to a component,
* is cloned within the subgraph. Each cloned cluster contains a record pointing
* to the real cluster.
*/
Agraph_t **cccomps(Agraph_t *g, size_t *ncc, char *pfx) {
Agraph_t *dg;
size_t n_cnt, e_cnt;
agxbuf name = {0};
Agraph_t *out;
Agraph_t *dout;
Agnode_t *dn;
stk_t stk;
int sz = (int)sizeof(ccgraphinfo_t);
if (agnnodes(g) == 0) {
*ncc = 0;
return NULL;
}
/* Bind ccgraphinfo to graph and all subgraphs */
aginit(g, AGRAPH, GRECNAME, -sz, false);
/* Bind ccgraphinfo to graph and all subgraphs */
aginit(g, AGNODE, NRECNAME, sizeof(ccgnodeinfo_t), false);
dg = deriveGraph(g);
size_t ccs_length = (size_t)agnnodes(dg);
LIST(Agraph_t *) ccs = {0};
LIST_RESERVE(&ccs, ccs_length);
initStk(&stk, insertFn, clMarkFn);
for (dn = agfstnode(dg); dn; dn = agnxtnode(dg, dn)) {
if (marked(&stk, dn))
continue;
setPrefix(&name, pfx);
agxbprint(&name, "%" PRISIZE_T, LIST_SIZE(&ccs));
char *name_str = agxbuse(&name);
dout = agsubg(dg, name_str, 1);
out = agsubg(g, name_str, 1);
agbindrec(out, GRECNAME, sizeof(ccgraphinfo_t), false);
GD_cc_subg(out) = 1;
n_cnt = dfs(dg, dn, dout, &stk);
unionNodes(dout, out);
e_cnt = graphviz_node_induce(out, NULL);
subGInduce(g, out);
LIST_APPEND(&ccs, out);
agdelete(dg, dout);
if (Verbose)
fprintf(stderr,
"(%4" PRISIZE_T ") %7" PRISIZE_T " nodes %7" PRISIZE_T " edges\n",
LIST_SIZE(&ccs) - 1, n_cnt, e_cnt);
}
if (Verbose)
fprintf(stderr,
" %7d nodes %7d edges %7" PRISIZE_T " components %s\n",
agnnodes(g), agnedges(g), LIST_SIZE(&ccs), agnameof(g));
agclose(dg);
agclean(g, AGRAPH, GRECNAME);
agclean(g, AGNODE, NRECNAME);
freeStk(&stk);
agxbfree(&name);
Agraph_t **ret;
LIST_DETACH(&ccs, &ret, ncc);
return ret;
}
/* isConnected:
* Returns 1 if the graph is connected.
* Returns 0 if the graph is not connected.
* Returns -1 if the graph is error.
*/
int isConnected(Agraph_t *g) {
Agnode_t *n;
int ret = 1;
size_t cnt = 0;
stk_t stk;
if (agnnodes(g) == 0)
return 1;
initStk(&stk, NULL, markFn);
for (n = agfstnode(g); n; n = agnxtnode(g, n))
unmark(&stk, n);
n = agfstnode(g);
cnt = dfs(g, agfstnode(g), NULL, &stk);
freeStk(&stk);
if (cnt != (size_t)agnnodes(g))
ret = 0;
return ret;
}
|