1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <pathplan/pathutil.h>
#include <pathplan/solvers.h>
#define EPSILON1 1E-3
#define EPSILON2 1E-6
typedef struct tna_t {
double t;
Ppoint_t a[2];
} tna_t;
#define DISTSQ(a, b) ( \
(((a).x - (b).x) * ((a).x - (b).x)) + (((a).y - (b).y) * ((a).y - (b).y)) \
)
#define POINTSIZE sizeof (Ppoint_t)
static Ppoint_t *ops;
static size_t opn, opl;
static int reallyroutespline(Pedge_t *, size_t,
Ppoint_t *, int, Ppoint_t, Ppoint_t);
static int mkspline(Ppoint_t *, int, const tna_t *, Ppoint_t, Ppoint_t,
Ppoint_t *, Ppoint_t *, Ppoint_t *, Ppoint_t *);
static int splinefits(Pedge_t *, size_t, Ppoint_t, Pvector_t, Ppoint_t,
Pvector_t, Ppoint_t *, int);
static int splineisinside(Pedge_t *, size_t, Ppoint_t *);
static int splineintersectsline(Ppoint_t *, Ppoint_t *, double *);
static void points2coeff(double, double, double, double, double *);
static void addroot(double, double *, int *);
static Pvector_t normv(Pvector_t);
static int growops(size_t);
static Ppoint_t add(Ppoint_t, Ppoint_t);
static Ppoint_t sub(Ppoint_t, Ppoint_t);
static double dist(Ppoint_t, Ppoint_t);
static Ppoint_t scale(Ppoint_t, double);
static double dot(Ppoint_t, Ppoint_t);
static double B0(double t);
static double B1(double t);
static double B2(double t);
static double B3(double t);
static double B01(double t);
static double B23(double t);
/* Given a set of barrier line segments edges as obstacles, a template
* path input_route, and endpoint vectors endpoint_slopes, construct a spline
* fitting the input and endpoint vectors, and return in output_route.
* Return 0 on success and -1 on failure, including no memory.
*/
int Proutespline(Pedge_t *barriers, size_t n_barriers, Ppolyline_t input_route,
Ppoint_t endpoint_slopes[2], Ppolyline_t *output_route) {
Ppoint_t *inps;
int inpn;
/* unpack into previous format rather than modify legacy code */
inps = input_route.ps;
assert(input_route.pn <= INT_MAX);
inpn = (int)input_route.pn;
/* generate the splines */
endpoint_slopes[0] = normv(endpoint_slopes[0]);
endpoint_slopes[1] = normv(endpoint_slopes[1]);
opl = 0;
if (growops(4) < 0) {
return -1;
}
ops[opl++] = inps[0];
if (reallyroutespline(barriers, n_barriers, inps, inpn, endpoint_slopes[0],
endpoint_slopes[1]) == -1)
return -1;
output_route->pn = opl;
output_route->ps = ops;
return 0;
}
static int reallyroutespline(Pedge_t *edges, size_t edgen, Ppoint_t *inps,
int inpn, Ppoint_t ev0, Ppoint_t ev1) {
Ppoint_t p1, p2;
Pvector_t v1, v2;
double d;
assert(inpn > 0);
tna_t *const tnas = calloc((size_t)inpn, sizeof(tna_t));
if (tnas == NULL) {
return -1;
}
tnas[0].t = 0;
for (int i = 1; i < inpn; i++)
tnas[i].t = tnas[i - 1].t + dist(inps[i], inps[i - 1]);
for (int i = 1; i < inpn; i++)
tnas[i].t /= tnas[inpn - 1].t;
for (int i = 0; i < inpn; i++) {
tnas[i].a[0] = scale(ev0, B1(tnas[i].t));
tnas[i].a[1] = scale(ev1, B2(tnas[i].t));
}
if (mkspline(inps, inpn, tnas, ev0, ev1, &p1, &v1, &p2, &v2) == -1) {
free(tnas);
return -1;
}
int fit = splinefits(edges, edgen, p1, v1, p2, v2, inps, inpn);
if (fit > 0) {
free(tnas);
return 0;
}
if (fit < 0) {
free(tnas);
return -1;
}
const Ppoint_t cp1 = add(p1, scale(v1, 1 / 3.0));
const Ppoint_t cp2 = sub(p2, scale(v2, 1 / 3.0));
int maxi = -1;
double maxd = -1;
for (int i = 1; i < inpn - 1; i++) {
const double t = tnas[i].t;
const Ppoint_t p = {
.x = B0(t) * p1.x + B1(t) * cp1.x + B2(t) * cp2.x + B3(t) * p2.x,
.y = B0(t) * p1.y + B1(t) * cp1.y + B2(t) * cp2.y + B3(t) * p2.y};
if ((d = dist(p, inps[i])) > maxd) {
maxd = d;
maxi = i;
}
}
free(tnas);
const int spliti = maxi;
const Pvector_t splitv1 = normv(sub(inps[spliti], inps[spliti - 1]));
const Pvector_t splitv2 = normv(sub(inps[spliti + 1], inps[spliti]));
const Pvector_t splitv = normv(add(splitv1, splitv2));
if (reallyroutespline(edges, edgen, inps, spliti + 1, ev0, splitv) < 0) {
return -1;
}
if (reallyroutespline(edges, edgen, &inps[spliti], inpn - spliti, splitv,
ev1) < 0) {
return -1;
}
return 0;
}
static int mkspline(Ppoint_t * inps, int inpn, const tna_t *tnas, Ppoint_t ev0,
Ppoint_t ev1, Ppoint_t * sp0, Ppoint_t * sv0,
Ppoint_t * sp1, Ppoint_t * sv1)
{
Ppoint_t tmp;
double c[2][2], x[2], det01, det0X, detX1;
double d01, scale0, scale3;
int i;
scale0 = scale3 = 0.0;
c[0][0] = c[0][1] = c[1][0] = c[1][1] = 0.0;
x[0] = x[1] = 0.0;
for (i = 0; i < inpn; i++) {
c[0][0] += dot(tnas[i].a[0], tnas[i].a[0]);
c[0][1] += dot(tnas[i].a[0], tnas[i].a[1]);
c[1][0] = c[0][1];
c[1][1] += dot(tnas[i].a[1], tnas[i].a[1]);
tmp = sub(inps[i], add(scale(inps[0], B01(tnas[i].t)),
scale(inps[inpn - 1], B23(tnas[i].t))));
x[0] += dot(tnas[i].a[0], tmp);
x[1] += dot(tnas[i].a[1], tmp);
}
det01 = c[0][0] * c[1][1] - c[1][0] * c[0][1];
det0X = c[0][0] * x[1] - c[0][1] * x[0];
detX1 = x[0] * c[1][1] - x[1] * c[0][1];
if (fabs(det01) >= 1e-6) {
scale0 = detX1 / det01;
scale3 = det0X / det01;
}
if (fabs(det01) < 1e-6 || scale0 <= 0.0 || scale3 <= 0.0) {
d01 = dist(inps[0], inps[inpn - 1]) / 3.0;
scale0 = d01;
scale3 = d01;
}
*sp0 = inps[0];
*sv0 = scale(ev0, scale0);
*sp1 = inps[inpn - 1];
*sv1 = scale(ev1, scale3);
return 0;
}
static double dist_n(Ppoint_t * p, int n)
{
int i;
double rv;
rv = 0.0;
for (i = 1; i < n; i++) {
rv += hypot(p[i].x - p[i - 1].x, p[i].y - p[i - 1].y);
}
return rv;
}
static int splinefits(Pedge_t *edges, size_t edgen, Ppoint_t pa, Pvector_t va,
Ppoint_t pb, Pvector_t vb, Ppoint_t *inps, int inpn) {
Ppoint_t sps[4];
double a;
int pi;
int forceflag;
int first = 1;
forceflag = (inpn == 2 ? 1 : 0);
a = 4;
for (;;) {
sps[0].x = pa.x;
sps[0].y = pa.y;
sps[1].x = pa.x + a * va.x / 3.0;
sps[1].y = pa.y + a * va.y / 3.0;
sps[2].x = pb.x - a * vb.x / 3.0;
sps[2].y = pb.y - a * vb.y / 3.0;
sps[3].x = pb.x;
sps[3].y = pb.y;
/* shortcuts (paths shorter than the shortest path) not allowed -
* they must be outside the constraint polygon. this can happen
* if the candidate spline intersects the constraint polygon exactly
* on sides or vertices. maybe this could be more elegant, but
* it solves the immediate problem. we could also try jittering the
* constraint polygon, or computing the candidate spline more carefully,
* for example using the path. SCN */
if (first && (dist_n(sps, 4) < (dist_n(inps, inpn) - EPSILON1)))
return 0;
first = 0;
if (splineisinside(edges, edgen, &sps[0])) {
if (growops(opl + 4) < 0) {
return -1;
}
for (pi = 1; pi < 4; pi++)
ops[opl].x = sps[pi].x, ops[opl++].y = sps[pi].y;
#if defined(DEBUG) && DEBUG >= 1
fprintf(stderr, "success: %f %f\n", a, a);
#endif
return 1;
}
// is `a` 0, accounting for the precision with which it was computed (on the
// last loop iteration) below?
if (a < 0.005) {
if (forceflag) {
if (growops(opl + 4) < 0) {
return -1;
}
for (pi = 1; pi < 4; pi++)
ops[opl].x = sps[pi].x, ops[opl++].y = sps[pi].y;
#if defined(DEBUG) && DEBUG >= 1
fprintf(stderr, "forced straight line: %f %f\n", a, a);
#endif
return 1;
}
break;
}
if (a > .01)
a /= 2;
else
a = 0;
}
#if defined(DEBUG) && DEBUG >= 1
fprintf(stderr, "failure\n");
#endif
return 0;
}
static int splineisinside(Pedge_t *edges, size_t edgen, Ppoint_t *sps) {
double roots[4];
int rooti, rootn;
Ppoint_t lps[2], ip;
double t, ta, tb, tc, td;
for (size_t ei = 0; ei < edgen; ei++) {
lps[0] = edges[ei].a, lps[1] = edges[ei].b;
if ((rootn = splineintersectsline(sps, lps, roots)) == 4)
continue;
for (rooti = 0; rooti < rootn; rooti++) {
if (roots[rooti] < EPSILON2 || roots[rooti] > 1 - EPSILON2)
continue;
t = roots[rooti];
td = t * t * t;
tc = 3 * t * t * (1 - t);
tb = 3 * t * (1 - t) * (1 - t);
ta = (1 - t) * (1 - t) * (1 - t);
ip.x = ta * sps[0].x + tb * sps[1].x +
tc * sps[2].x + td * sps[3].x;
ip.y = ta * sps[0].y + tb * sps[1].y +
tc * sps[2].y + td * sps[3].y;
if (DISTSQ(ip, lps[0]) < EPSILON1 ||
DISTSQ(ip, lps[1]) < EPSILON1)
continue;
return 0;
}
}
return 1;
}
static int splineintersectsline(Ppoint_t * sps, Ppoint_t * lps,
double *roots)
{
double scoeff[4], xcoeff[2], ycoeff[2];
double xroots[3], yroots[3], tv, sv, rat;
int rootn, xrootn, yrootn, i, j;
xcoeff[0] = lps[0].x;
xcoeff[1] = lps[1].x - lps[0].x;
ycoeff[0] = lps[0].y;
ycoeff[1] = lps[1].y - lps[0].y;
rootn = 0;
if (xcoeff[1] == 0) {
if (ycoeff[1] == 0) {
points2coeff(sps[0].x, sps[1].x, sps[2].x, sps[3].x, scoeff);
scoeff[0] -= xcoeff[0];
xrootn = solve3(scoeff, xroots);
points2coeff(sps[0].y, sps[1].y, sps[2].y, sps[3].y, scoeff);
scoeff[0] -= ycoeff[0];
yrootn = solve3(scoeff, yroots);
if (xrootn == 4)
if (yrootn == 4)
return 4;
else
for (j = 0; j < yrootn; j++)
addroot(yroots[j], roots, &rootn);
else if (yrootn == 4)
for (i = 0; i < xrootn; i++)
addroot(xroots[i], roots, &rootn);
else
for (i = 0; i < xrootn; i++)
for (j = 0; j < yrootn; j++)
if (xroots[i] == yroots[j])
addroot(xroots[i], roots, &rootn);
return rootn;
} else {
points2coeff(sps[0].x, sps[1].x, sps[2].x, sps[3].x, scoeff);
scoeff[0] -= xcoeff[0];
xrootn = solve3(scoeff, xroots);
if (xrootn == 4)
return 4;
for (i = 0; i < xrootn; i++) {
tv = xroots[i];
if (tv >= 0 && tv <= 1) {
points2coeff(sps[0].y, sps[1].y, sps[2].y, sps[3].y,
scoeff);
sv = scoeff[0] + tv * (scoeff[1] + tv *
(scoeff[2] + tv * scoeff[3]));
sv = (sv - ycoeff[0]) / ycoeff[1];
if ((0 <= sv) && (sv <= 1))
addroot(tv, roots, &rootn);
}
}
return rootn;
}
} else {
rat = ycoeff[1] / xcoeff[1];
points2coeff(sps[0].y - rat * sps[0].x, sps[1].y - rat * sps[1].x,
sps[2].y - rat * sps[2].x, sps[3].y - rat * sps[3].x,
scoeff);
scoeff[0] += rat * xcoeff[0] - ycoeff[0];
xrootn = solve3(scoeff, xroots);
if (xrootn == 4)
return 4;
for (i = 0; i < xrootn; i++) {
tv = xroots[i];
if (tv >= 0 && tv <= 1) {
points2coeff(sps[0].x, sps[1].x, sps[2].x, sps[3].x,
scoeff);
sv = scoeff[0] + tv * (scoeff[1] +
tv * (scoeff[2] + tv * scoeff[3]));
sv = (sv - xcoeff[0]) / xcoeff[1];
if ((0 <= sv) && (sv <= 1))
addroot(tv, roots, &rootn);
}
}
return rootn;
}
}
static void points2coeff(double v0, double v1, double v2, double v3,
double *coeff)
{
coeff[3] = v3 + 3 * v1 - (v0 + 3 * v2);
coeff[2] = 3 * v0 + 3 * v2 - 6 * v1;
coeff[1] = 3 * (v1 - v0);
coeff[0] = v0;
}
static void addroot(double root, double *roots, int *rootnp)
{
if (root >= 0 && root <= 1)
roots[*rootnp] = root, (*rootnp)++;
}
static Pvector_t normv(Pvector_t v)
{
double d;
d = v.x * v.x + v.y * v.y;
if (d > 1e-6) {
d = sqrt(d);
v.x /= d, v.y /= d;
}
return v;
}
static int growops(size_t newopn) {
if (newopn <= opn)
return 0;
if (!(ops = realloc(ops, POINTSIZE * newopn))) {
return -1;
}
opn = newopn;
return 0;
}
static Ppoint_t add(Ppoint_t p1, Ppoint_t p2)
{
p1.x += p2.x, p1.y += p2.y;
return p1;
}
static Ppoint_t sub(Ppoint_t p1, Ppoint_t p2)
{
p1.x -= p2.x, p1.y -= p2.y;
return p1;
}
static double dist(Ppoint_t p1, Ppoint_t p2)
{
double dx, dy;
dx = p2.x - p1.x, dy = p2.y - p1.y;
return hypot(dx, dy);
}
static Ppoint_t scale(Ppoint_t p, double c)
{
p.x *= c, p.y *= c;
return p;
}
static double dot(Ppoint_t p1, Ppoint_t p2)
{
return p1.x * p2.x + p1.y * p2.y;
}
static double B0(double t)
{
double tmp = 1.0 - t;
return tmp * tmp * tmp;
}
static double B1(double t)
{
double tmp = 1.0 - t;
return 3 * t * tmp * tmp;
}
static double B2(double t)
{
double tmp = 1.0 - t;
return 3 * t * t * tmp;
}
static double B3(double t)
{
return t * t * t;
}
static double B01(double t)
{
double tmp = 1.0 - t;
return tmp * tmp * (tmp + 3 * t);
}
static double B23(double t)
{
double tmp = 1.0 - t;
return t * t * (3 * tmp + t);
}
|