File: shortest.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (446 lines) | stat: -rw-r--r-- 12,655 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include <pathplan/pathutil.h>
#include <pathplan/tri.h>
#include <util/list.h>
#include <util/prisize_t.h>

#define DQ_FRONT 1
#define DQ_BACK  2

#define prerror(msg) \
        fprintf (stderr, "lib/pathplan/%s:%d: %s\n", __FILE__, __LINE__, (msg))

#define POINTSIZE sizeof (Ppoint_t)

typedef struct pointnlink_t {
    Ppoint_t *pp;
    struct pointnlink_t *link;
} pointnlink_t;

#define POINTNLINKSIZE sizeof (pointnlink_t)
#define POINTNLINKPSIZE sizeof (pointnlink_t *)

typedef struct {
    pointnlink_t *pnl0p;
    pointnlink_t *pnl1p;
    size_t right_index; ///< index into \p tris of the triangle to the right
} tedge_t;

typedef struct triangle_t {
    int mark;
    tedge_t e[3];
} triangle_t;

typedef struct deque_t {
    pointnlink_t **pnlps;
    size_t pnlpn, fpnlpi, lpnlpi, apex;
} deque_t;

static LIST(triangle_t) tris;

static Ppoint_t *ops;
static size_t opn;

static int triangulate(pointnlink_t **, size_t);
static int loadtriangle(pointnlink_t *, pointnlink_t *, pointnlink_t *);
static void connecttris(size_t, size_t);
static bool marktripath(size_t, size_t);

static void add2dq(deque_t *dq, int, pointnlink_t*);
static void splitdq(deque_t *dq, int, size_t);
static size_t finddqsplit(const deque_t *dq, pointnlink_t*);

static int pointintri(size_t, Ppoint_t *);

static int growops(size_t);

static Ppoint_t point_indexer(void *base, size_t index) {
  pointnlink_t **b = base;
  return *b[index]->pp;
}

/* Pshortestpath:
 * Find a shortest path contained in the polygon polyp going between the
 * points supplied in eps. The resulting polyline is stored in output.
 * Return 0 on success, -1 on bad input, -2 on memory allocation problem. 
 */
int Pshortestpath(Ppoly_t * polyp, Ppoint_t eps[2], Ppolyline_t * output)
{
    size_t pi, minpi;
    double minx;
    size_t trii, trij, ftrii, ltrii;
    int ei;
    pointnlink_t epnls[2], *lpnlp, *rpnlp, *pnlp;
    triangle_t *trip;

    /* make space */
    pointnlink_t *pnls = calloc(polyp->pn, sizeof(pnls[0]));
    if (polyp->pn > 0 && pnls == NULL) {
	prerror("cannot realloc pnls");
	return -2;
    }
    pointnlink_t **pnlps = calloc(polyp->pn, sizeof(pnlps[0]));
    if (polyp->pn > 0 && pnlps == NULL) {
	prerror("cannot realloc pnlps");
	free(pnls);
	return -2;
    }
    size_t pnll = 0;
    LIST_CLEAR(&tris);

    deque_t dq = {.pnlpn = polyp->pn * 2};
    dq.pnlps = calloc(dq.pnlpn, POINTNLINKPSIZE);
    if (dq.pnlps == NULL) {
	prerror("cannot realloc dq.pnls");
	free(pnlps);
	free(pnls);
	return -2;
    }
    dq.fpnlpi = dq.pnlpn / 2;
    dq.lpnlpi = dq.fpnlpi - 1;

    /* make sure polygon is CCW and load pnls array */
    for (pi = 0, minx = HUGE_VAL, minpi = SIZE_MAX; pi < polyp->pn; pi++) {
	if (minx > polyp->ps[pi].x)
	    minx = polyp->ps[pi].x, minpi = pi;
    }
    const Ppoint_t p2 = polyp->ps[minpi];
    const Ppoint_t p1 = polyp->ps[minpi == 0 ? polyp->pn - 1 : minpi - 1];
    const Ppoint_t p3 = polyp->ps[(minpi + 1) % polyp->pn];
    if ((p1.x == p2.x && p2.x == p3.x && p3.y > p2.y) ||
	ccw(p1, p2, p3) != ISCCW) {
	for (pi = polyp->pn - 1; pi != SIZE_MAX; pi--) {
	    if (pi < polyp->pn - 1
		&& polyp->ps[pi].x == polyp->ps[pi + 1].x
		&& polyp->ps[pi].y == polyp->ps[pi + 1].y)
		continue;
	    pnls[pnll].pp = &polyp->ps[pi];
	    pnls[pnll].link = &pnls[pnll % polyp->pn];
	    pnlps[pnll] = &pnls[pnll];
	    pnll++;
	}
    } else {
	for (pi = 0; pi < polyp->pn; pi++) {
	    if (pi > 0 && polyp->ps[pi].x == polyp->ps[pi - 1].x &&
		polyp->ps[pi].y == polyp->ps[pi - 1].y)
		continue;
	    pnls[pnll].pp = &polyp->ps[pi];
	    pnls[pnll].link = &pnls[pnll % polyp->pn];
	    pnlps[pnll] = &pnls[pnll];
	    pnll++;
	}
    }

#if defined(DEBUG) && DEBUG >= 1
    fprintf(stderr, "points\n%" PRISIZE_T "\n", pnll);
    for (size_t pnli = 0; pnli < pnll; pnli++)
	fprintf(stderr, "%f %f\n", pnls[pnli].pp->x, pnls[pnli].pp->y);
#endif

    /* generate list of triangles */
    if (triangulate(pnlps, pnll)) {
	free(dq.pnlps);
	free(pnlps);
	free(pnls);
	return -2;
    }

#if defined(DEBUG) && DEBUG >= 2
    fprintf(stderr, "triangles\n%" PRISIZE_T "\n", LIST_SIZE(&tris));
    for (trii = 0; trii < LIST_SIZE(&tris); trii++)
	for (ei = 0; ei < 3; ei++)
	    fprintf(stderr, "%f %f\n", LIST_GET(&tris, trii).e[ei].pnl0p->pp->x,
		    LIST_GET(&tris, trii).e[ei].pnl0p->pp->y);
#endif

    /* connect all pairs of triangles that share an edge */
    for (trii = 0; trii < LIST_SIZE(&tris); trii++)
	for (trij = trii + 1; trij < LIST_SIZE(&tris); trij++)
	    connecttris(trii, trij);

    /* find first and last triangles */
    for (trii = 0; trii < LIST_SIZE(&tris); trii++)
	if (pointintri(trii, &eps[0]))
	    break;
    if (trii == LIST_SIZE(&tris)) {
	prerror("source point not in any triangle");
	free(dq.pnlps);
	free(pnlps);
	free(pnls);
	return -1;
    }
    ftrii = trii;
    for (trii = 0; trii < LIST_SIZE(&tris); trii++)
	if (pointintri(trii, &eps[1]))
	    break;
    if (trii == LIST_SIZE(&tris)) {
	prerror("destination point not in any triangle");
	free(dq.pnlps);
	free(pnlps);
	free(pnls);
	return -1;
    }
    ltrii = trii;

    /* mark the strip of triangles from eps[0] to eps[1] */
    if (!marktripath(ftrii, ltrii)) {
	prerror("cannot find triangle path");
	free(dq.pnlps);
	free(pnlps);
	free(pnls);
	/* a straight line is better than failing */
	if (growops(2) != 0)
		return -2;
	output->pn = 2;
	ops[0] = eps[0], ops[1] = eps[1];
	output->ps = ops;
	return 0;
    }

    /* if endpoints in same triangle, use a single line */
    if (ftrii == ltrii) {
	free(dq.pnlps);
	free(pnlps);
	free(pnls);
	if (growops(2) != 0)
		return -2;
	output->pn = 2;
	ops[0] = eps[0], ops[1] = eps[1];
	output->ps = ops;
	return 0;
    }

    /* build funnel and shortest path linked list (in add2dq) */
    epnls[0].pp = &eps[0], epnls[0].link = NULL;
    epnls[1].pp = &eps[1], epnls[1].link = NULL;
    add2dq(&dq, DQ_FRONT, &epnls[0]);
    dq.apex = dq.fpnlpi;
    trii = ftrii;
    while (trii != SIZE_MAX) {
	trip = LIST_AT(&tris, trii);
	trip->mark = 2;

	/* find the left and right points of the exiting edge */
	for (ei = 0; ei < 3; ei++)
	    if (trip->e[ei].right_index != SIZE_MAX && LIST_GET(&tris, trip->e[ei].right_index).mark == 1)
		break;
	if (ei == 3) {		/* in last triangle */
	    if (ccw(eps[1], *dq.pnlps[dq.fpnlpi]->pp,
		    *dq.pnlps[dq.lpnlpi]->pp) == ISCCW)
		lpnlp = dq.pnlps[dq.lpnlpi], rpnlp = &epnls[1];
	    else
		lpnlp = &epnls[1], rpnlp = dq.pnlps[dq.lpnlpi];
	} else {
	    pnlp = trip->e[(ei + 1) % 3].pnl1p;
	    if (ccw(*trip->e[ei].pnl0p->pp, *pnlp->pp,
		    *trip->e[ei].pnl1p->pp) == ISCCW)
		lpnlp = trip->e[ei].pnl1p, rpnlp = trip->e[ei].pnl0p;
	    else
		lpnlp = trip->e[ei].pnl0p, rpnlp = trip->e[ei].pnl1p;
	}

	/* update deque */
	if (trii == ftrii) {
	    add2dq(&dq, DQ_BACK, lpnlp);
	    add2dq(&dq, DQ_FRONT, rpnlp);
	} else {
	    if (dq.pnlps[dq.fpnlpi] != rpnlp
		&& dq.pnlps[dq.lpnlpi] != rpnlp) {
		/* add right point to deque */
		size_t splitindex = finddqsplit(&dq, rpnlp);
		splitdq(&dq, DQ_BACK, splitindex);
		add2dq(&dq, DQ_FRONT, rpnlp);
		/* if the split is behind the apex, then reset apex */
		if (splitindex > dq.apex)
		    dq.apex = splitindex;
	    } else {
		/* add left point to deque */
		size_t splitindex = finddqsplit(&dq, lpnlp);
		splitdq(&dq, DQ_FRONT, splitindex);
		add2dq(&dq, DQ_BACK, lpnlp);
		/* if the split is in front of the apex, then reset apex */
		if (splitindex < dq.apex)
		    dq.apex = splitindex;
	    }
	}
	trii = SIZE_MAX;
	for (ei = 0; ei < 3; ei++)
	    if (trip->e[ei].right_index != SIZE_MAX && LIST_GET(&tris, trip->e[ei].right_index).mark == 1) {
		trii = trip->e[ei].right_index;
		break;
	    }
    }

#if defined(DEBUG) && DEBUG >= 1
    fprintf(stderr, "polypath");
    for (pnlp = &epnls[1]; pnlp; pnlp = pnlp->link)
	fprintf(stderr, " %f %f", pnlp->pp->x, pnlp->pp->y);
    fprintf(stderr, "\n");
#endif

    free(dq.pnlps);
    size_t i;
    for (i = 0, pnlp = &epnls[1]; pnlp; pnlp = pnlp->link)
	i++;
    if (growops(i) != 0) {
	free(pnlps);
	free(pnls);
	return -2;
    }
    output->pn = i;
    for (i = i - 1, pnlp = &epnls[1]; pnlp; i--, pnlp = pnlp->link)
	ops[i] = *pnlp->pp;
    output->ps = ops;
    free(pnlps);
    free(pnls);

    return 0;
}

/* triangulate polygon */
static int triangulate(pointnlink_t **points, size_t point_count) {
	if (point_count > 3)
	{
		for (size_t pnli = 0; pnli < point_count; pnli++)
		{
			const size_t pnlip1 = (pnli + 1) % point_count;
			const size_t pnlip2 = (pnli + 2) % point_count;
			if (isdiagonal(pnli, pnlip2, points, point_count, point_indexer))
			{
				if (loadtriangle(points[pnli], points[pnlip1], points[pnlip2]) != 0)
					return -1;
				for (pnli = pnlip1; pnli < point_count - 1; pnli++)
					points[pnli] = points[pnli + 1];
				return triangulate(points, point_count - 1);
			}
		}
		prerror("triangulation failed");
    } 
	else {
		if (loadtriangle(points[0], points[1], points[2]) != 0)
			return -1;
	}

    return 0;
}

static int loadtriangle(pointnlink_t * pnlap, pointnlink_t * pnlbp,
			 pointnlink_t * pnlcp)
{
    triangle_t trip = {0};
    trip.e[0].pnl0p = pnlap, trip.e[0].pnl1p = pnlbp, trip.e[0].right_index = SIZE_MAX;
    trip.e[1].pnl0p = pnlbp, trip.e[1].pnl1p = pnlcp, trip.e[1].right_index = SIZE_MAX;
    trip.e[2].pnl0p = pnlcp, trip.e[2].pnl1p = pnlap, trip.e[2].right_index = SIZE_MAX;

    if (!LIST_TRY_APPEND(&tris, trip)) {
	prerror("cannot realloc tris");
	return -1;
    }

    return 0;
}

/* connect a pair of triangles at their common edge (if any) */
static void connecttris(size_t tri1, size_t tri2) {
    triangle_t *tri1p, *tri2p;
    int ei, ej;

    for (ei = 0; ei < 3; ei++) {
	for (ej = 0; ej < 3; ej++) {
	    tri1p = LIST_AT(&tris, tri1);
	    tri2p = LIST_AT(&tris, tri2);
	    if ((tri1p->e[ei].pnl0p->pp == tri2p->e[ej].pnl0p->pp &&
		 tri1p->e[ei].pnl1p->pp == tri2p->e[ej].pnl1p->pp) ||
		(tri1p->e[ei].pnl0p->pp == tri2p->e[ej].pnl1p->pp &&
		 tri1p->e[ei].pnl1p->pp == tri2p->e[ej].pnl0p->pp))
		tri1p->e[ei].right_index = tri2, tri2p->e[ej].right_index = tri1;
	}
    }
}

/* find and mark path from trii, to trij */
static bool marktripath(size_t trii, size_t trij) {
    int ei;

    if (LIST_GET(&tris, trii).mark)
	return false;
    LIST_AT(&tris, trii)->mark = 1;
    if (trii == trij)
	return true;
    for (ei = 0; ei < 3; ei++)
	if (LIST_GET(&tris, trii).e[ei].right_index != SIZE_MAX &&
	    marktripath(LIST_GET(&tris, trii).e[ei].right_index, trij))
	    return true;
    LIST_AT(&tris, trii)->mark = 0;
    return false;
}

/* add a new point to the deque, either front or back */
static void add2dq(deque_t *dq, int side, pointnlink_t *pnlp) {
    if (side == DQ_FRONT) {
	if (dq->lpnlpi >= dq->fpnlpi)
	    pnlp->link = dq->pnlps[dq->fpnlpi];	/* shortest path links */
	dq->fpnlpi--;
	dq->pnlps[dq->fpnlpi] = pnlp;
    } else {
	if (dq->lpnlpi >= dq->fpnlpi)
	    pnlp->link = dq->pnlps[dq->lpnlpi];	/* shortest path links */
	dq->lpnlpi++;
	dq->pnlps[dq->lpnlpi] = pnlp;
    }
}

static void splitdq(deque_t *dq, int side, size_t index) {
    if (side == DQ_FRONT)
	dq->lpnlpi = index;
    else
	dq->fpnlpi = index;
}

static size_t finddqsplit(const deque_t *dq, pointnlink_t *pnlp) {
    for (size_t index = dq->fpnlpi; index < dq->apex; index++)
	if (ccw(*dq->pnlps[index + 1]->pp, *dq->pnlps[index]->pp, *pnlp->pp) == ISCCW)
	    return index;
    for (size_t index = dq->lpnlpi; index > dq->apex; index--)
	if (ccw(*dq->pnlps[index - 1]->pp, *dq->pnlps[index]->pp, *pnlp->pp) == ISCW)
	    return index;
    return dq->apex;
}

static int pointintri(size_t trii, Ppoint_t *pp) {
    int ei, sum;

    for (ei = 0, sum = 0; ei < 3; ei++)
	if (ccw(*LIST_GET(&tris, trii).e[ei].pnl0p->pp,
	        *LIST_GET(&tris, trii).e[ei].pnl1p->pp, *pp) != ISCW)
	    sum++;
    return sum == 3 || sum == 0;
}

static int growops(size_t newopn) {
    if (newopn <= opn)
	return 0;
    Ppoint_t *new_ops = realloc(ops, POINTSIZE * newopn);
    if (new_ops == NULL) {
	prerror("cannot realloc ops");
	return -1;
    }
    ops = new_ops;
    opn = newopn;

    return 0;
}