1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include <pathplan/pathutil.h>
#include <pathplan/tri.h>
#include <util/list.h>
#include <util/prisize_t.h>
#define DQ_FRONT 1
#define DQ_BACK 2
#define prerror(msg) \
fprintf (stderr, "lib/pathplan/%s:%d: %s\n", __FILE__, __LINE__, (msg))
#define POINTSIZE sizeof (Ppoint_t)
typedef struct pointnlink_t {
Ppoint_t *pp;
struct pointnlink_t *link;
} pointnlink_t;
#define POINTNLINKSIZE sizeof (pointnlink_t)
#define POINTNLINKPSIZE sizeof (pointnlink_t *)
typedef struct {
pointnlink_t *pnl0p;
pointnlink_t *pnl1p;
size_t right_index; ///< index into \p tris of the triangle to the right
} tedge_t;
typedef struct triangle_t {
int mark;
tedge_t e[3];
} triangle_t;
typedef struct deque_t {
pointnlink_t **pnlps;
size_t pnlpn, fpnlpi, lpnlpi, apex;
} deque_t;
static LIST(triangle_t) tris;
static Ppoint_t *ops;
static size_t opn;
static int triangulate(pointnlink_t **, size_t);
static int loadtriangle(pointnlink_t *, pointnlink_t *, pointnlink_t *);
static void connecttris(size_t, size_t);
static bool marktripath(size_t, size_t);
static void add2dq(deque_t *dq, int, pointnlink_t*);
static void splitdq(deque_t *dq, int, size_t);
static size_t finddqsplit(const deque_t *dq, pointnlink_t*);
static int pointintri(size_t, Ppoint_t *);
static int growops(size_t);
static Ppoint_t point_indexer(void *base, size_t index) {
pointnlink_t **b = base;
return *b[index]->pp;
}
/* Pshortestpath:
* Find a shortest path contained in the polygon polyp going between the
* points supplied in eps. The resulting polyline is stored in output.
* Return 0 on success, -1 on bad input, -2 on memory allocation problem.
*/
int Pshortestpath(Ppoly_t * polyp, Ppoint_t eps[2], Ppolyline_t * output)
{
size_t pi, minpi;
double minx;
size_t trii, trij, ftrii, ltrii;
int ei;
pointnlink_t epnls[2], *lpnlp, *rpnlp, *pnlp;
triangle_t *trip;
/* make space */
pointnlink_t *pnls = calloc(polyp->pn, sizeof(pnls[0]));
if (polyp->pn > 0 && pnls == NULL) {
prerror("cannot realloc pnls");
return -2;
}
pointnlink_t **pnlps = calloc(polyp->pn, sizeof(pnlps[0]));
if (polyp->pn > 0 && pnlps == NULL) {
prerror("cannot realloc pnlps");
free(pnls);
return -2;
}
size_t pnll = 0;
LIST_CLEAR(&tris);
deque_t dq = {.pnlpn = polyp->pn * 2};
dq.pnlps = calloc(dq.pnlpn, POINTNLINKPSIZE);
if (dq.pnlps == NULL) {
prerror("cannot realloc dq.pnls");
free(pnlps);
free(pnls);
return -2;
}
dq.fpnlpi = dq.pnlpn / 2;
dq.lpnlpi = dq.fpnlpi - 1;
/* make sure polygon is CCW and load pnls array */
for (pi = 0, minx = HUGE_VAL, minpi = SIZE_MAX; pi < polyp->pn; pi++) {
if (minx > polyp->ps[pi].x)
minx = polyp->ps[pi].x, minpi = pi;
}
const Ppoint_t p2 = polyp->ps[minpi];
const Ppoint_t p1 = polyp->ps[minpi == 0 ? polyp->pn - 1 : minpi - 1];
const Ppoint_t p3 = polyp->ps[(minpi + 1) % polyp->pn];
if ((p1.x == p2.x && p2.x == p3.x && p3.y > p2.y) ||
ccw(p1, p2, p3) != ISCCW) {
for (pi = polyp->pn - 1; pi != SIZE_MAX; pi--) {
if (pi < polyp->pn - 1
&& polyp->ps[pi].x == polyp->ps[pi + 1].x
&& polyp->ps[pi].y == polyp->ps[pi + 1].y)
continue;
pnls[pnll].pp = &polyp->ps[pi];
pnls[pnll].link = &pnls[pnll % polyp->pn];
pnlps[pnll] = &pnls[pnll];
pnll++;
}
} else {
for (pi = 0; pi < polyp->pn; pi++) {
if (pi > 0 && polyp->ps[pi].x == polyp->ps[pi - 1].x &&
polyp->ps[pi].y == polyp->ps[pi - 1].y)
continue;
pnls[pnll].pp = &polyp->ps[pi];
pnls[pnll].link = &pnls[pnll % polyp->pn];
pnlps[pnll] = &pnls[pnll];
pnll++;
}
}
#if defined(DEBUG) && DEBUG >= 1
fprintf(stderr, "points\n%" PRISIZE_T "\n", pnll);
for (size_t pnli = 0; pnli < pnll; pnli++)
fprintf(stderr, "%f %f\n", pnls[pnli].pp->x, pnls[pnli].pp->y);
#endif
/* generate list of triangles */
if (triangulate(pnlps, pnll)) {
free(dq.pnlps);
free(pnlps);
free(pnls);
return -2;
}
#if defined(DEBUG) && DEBUG >= 2
fprintf(stderr, "triangles\n%" PRISIZE_T "\n", LIST_SIZE(&tris));
for (trii = 0; trii < LIST_SIZE(&tris); trii++)
for (ei = 0; ei < 3; ei++)
fprintf(stderr, "%f %f\n", LIST_GET(&tris, trii).e[ei].pnl0p->pp->x,
LIST_GET(&tris, trii).e[ei].pnl0p->pp->y);
#endif
/* connect all pairs of triangles that share an edge */
for (trii = 0; trii < LIST_SIZE(&tris); trii++)
for (trij = trii + 1; trij < LIST_SIZE(&tris); trij++)
connecttris(trii, trij);
/* find first and last triangles */
for (trii = 0; trii < LIST_SIZE(&tris); trii++)
if (pointintri(trii, &eps[0]))
break;
if (trii == LIST_SIZE(&tris)) {
prerror("source point not in any triangle");
free(dq.pnlps);
free(pnlps);
free(pnls);
return -1;
}
ftrii = trii;
for (trii = 0; trii < LIST_SIZE(&tris); trii++)
if (pointintri(trii, &eps[1]))
break;
if (trii == LIST_SIZE(&tris)) {
prerror("destination point not in any triangle");
free(dq.pnlps);
free(pnlps);
free(pnls);
return -1;
}
ltrii = trii;
/* mark the strip of triangles from eps[0] to eps[1] */
if (!marktripath(ftrii, ltrii)) {
prerror("cannot find triangle path");
free(dq.pnlps);
free(pnlps);
free(pnls);
/* a straight line is better than failing */
if (growops(2) != 0)
return -2;
output->pn = 2;
ops[0] = eps[0], ops[1] = eps[1];
output->ps = ops;
return 0;
}
/* if endpoints in same triangle, use a single line */
if (ftrii == ltrii) {
free(dq.pnlps);
free(pnlps);
free(pnls);
if (growops(2) != 0)
return -2;
output->pn = 2;
ops[0] = eps[0], ops[1] = eps[1];
output->ps = ops;
return 0;
}
/* build funnel and shortest path linked list (in add2dq) */
epnls[0].pp = &eps[0], epnls[0].link = NULL;
epnls[1].pp = &eps[1], epnls[1].link = NULL;
add2dq(&dq, DQ_FRONT, &epnls[0]);
dq.apex = dq.fpnlpi;
trii = ftrii;
while (trii != SIZE_MAX) {
trip = LIST_AT(&tris, trii);
trip->mark = 2;
/* find the left and right points of the exiting edge */
for (ei = 0; ei < 3; ei++)
if (trip->e[ei].right_index != SIZE_MAX && LIST_GET(&tris, trip->e[ei].right_index).mark == 1)
break;
if (ei == 3) { /* in last triangle */
if (ccw(eps[1], *dq.pnlps[dq.fpnlpi]->pp,
*dq.pnlps[dq.lpnlpi]->pp) == ISCCW)
lpnlp = dq.pnlps[dq.lpnlpi], rpnlp = &epnls[1];
else
lpnlp = &epnls[1], rpnlp = dq.pnlps[dq.lpnlpi];
} else {
pnlp = trip->e[(ei + 1) % 3].pnl1p;
if (ccw(*trip->e[ei].pnl0p->pp, *pnlp->pp,
*trip->e[ei].pnl1p->pp) == ISCCW)
lpnlp = trip->e[ei].pnl1p, rpnlp = trip->e[ei].pnl0p;
else
lpnlp = trip->e[ei].pnl0p, rpnlp = trip->e[ei].pnl1p;
}
/* update deque */
if (trii == ftrii) {
add2dq(&dq, DQ_BACK, lpnlp);
add2dq(&dq, DQ_FRONT, rpnlp);
} else {
if (dq.pnlps[dq.fpnlpi] != rpnlp
&& dq.pnlps[dq.lpnlpi] != rpnlp) {
/* add right point to deque */
size_t splitindex = finddqsplit(&dq, rpnlp);
splitdq(&dq, DQ_BACK, splitindex);
add2dq(&dq, DQ_FRONT, rpnlp);
/* if the split is behind the apex, then reset apex */
if (splitindex > dq.apex)
dq.apex = splitindex;
} else {
/* add left point to deque */
size_t splitindex = finddqsplit(&dq, lpnlp);
splitdq(&dq, DQ_FRONT, splitindex);
add2dq(&dq, DQ_BACK, lpnlp);
/* if the split is in front of the apex, then reset apex */
if (splitindex < dq.apex)
dq.apex = splitindex;
}
}
trii = SIZE_MAX;
for (ei = 0; ei < 3; ei++)
if (trip->e[ei].right_index != SIZE_MAX && LIST_GET(&tris, trip->e[ei].right_index).mark == 1) {
trii = trip->e[ei].right_index;
break;
}
}
#if defined(DEBUG) && DEBUG >= 1
fprintf(stderr, "polypath");
for (pnlp = &epnls[1]; pnlp; pnlp = pnlp->link)
fprintf(stderr, " %f %f", pnlp->pp->x, pnlp->pp->y);
fprintf(stderr, "\n");
#endif
free(dq.pnlps);
size_t i;
for (i = 0, pnlp = &epnls[1]; pnlp; pnlp = pnlp->link)
i++;
if (growops(i) != 0) {
free(pnlps);
free(pnls);
return -2;
}
output->pn = i;
for (i = i - 1, pnlp = &epnls[1]; pnlp; i--, pnlp = pnlp->link)
ops[i] = *pnlp->pp;
output->ps = ops;
free(pnlps);
free(pnls);
return 0;
}
/* triangulate polygon */
static int triangulate(pointnlink_t **points, size_t point_count) {
if (point_count > 3)
{
for (size_t pnli = 0; pnli < point_count; pnli++)
{
const size_t pnlip1 = (pnli + 1) % point_count;
const size_t pnlip2 = (pnli + 2) % point_count;
if (isdiagonal(pnli, pnlip2, points, point_count, point_indexer))
{
if (loadtriangle(points[pnli], points[pnlip1], points[pnlip2]) != 0)
return -1;
for (pnli = pnlip1; pnli < point_count - 1; pnli++)
points[pnli] = points[pnli + 1];
return triangulate(points, point_count - 1);
}
}
prerror("triangulation failed");
}
else {
if (loadtriangle(points[0], points[1], points[2]) != 0)
return -1;
}
return 0;
}
static int loadtriangle(pointnlink_t * pnlap, pointnlink_t * pnlbp,
pointnlink_t * pnlcp)
{
triangle_t trip = {0};
trip.e[0].pnl0p = pnlap, trip.e[0].pnl1p = pnlbp, trip.e[0].right_index = SIZE_MAX;
trip.e[1].pnl0p = pnlbp, trip.e[1].pnl1p = pnlcp, trip.e[1].right_index = SIZE_MAX;
trip.e[2].pnl0p = pnlcp, trip.e[2].pnl1p = pnlap, trip.e[2].right_index = SIZE_MAX;
if (!LIST_TRY_APPEND(&tris, trip)) {
prerror("cannot realloc tris");
return -1;
}
return 0;
}
/* connect a pair of triangles at their common edge (if any) */
static void connecttris(size_t tri1, size_t tri2) {
triangle_t *tri1p, *tri2p;
int ei, ej;
for (ei = 0; ei < 3; ei++) {
for (ej = 0; ej < 3; ej++) {
tri1p = LIST_AT(&tris, tri1);
tri2p = LIST_AT(&tris, tri2);
if ((tri1p->e[ei].pnl0p->pp == tri2p->e[ej].pnl0p->pp &&
tri1p->e[ei].pnl1p->pp == tri2p->e[ej].pnl1p->pp) ||
(tri1p->e[ei].pnl0p->pp == tri2p->e[ej].pnl1p->pp &&
tri1p->e[ei].pnl1p->pp == tri2p->e[ej].pnl0p->pp))
tri1p->e[ei].right_index = tri2, tri2p->e[ej].right_index = tri1;
}
}
}
/* find and mark path from trii, to trij */
static bool marktripath(size_t trii, size_t trij) {
int ei;
if (LIST_GET(&tris, trii).mark)
return false;
LIST_AT(&tris, trii)->mark = 1;
if (trii == trij)
return true;
for (ei = 0; ei < 3; ei++)
if (LIST_GET(&tris, trii).e[ei].right_index != SIZE_MAX &&
marktripath(LIST_GET(&tris, trii).e[ei].right_index, trij))
return true;
LIST_AT(&tris, trii)->mark = 0;
return false;
}
/* add a new point to the deque, either front or back */
static void add2dq(deque_t *dq, int side, pointnlink_t *pnlp) {
if (side == DQ_FRONT) {
if (dq->lpnlpi >= dq->fpnlpi)
pnlp->link = dq->pnlps[dq->fpnlpi]; /* shortest path links */
dq->fpnlpi--;
dq->pnlps[dq->fpnlpi] = pnlp;
} else {
if (dq->lpnlpi >= dq->fpnlpi)
pnlp->link = dq->pnlps[dq->lpnlpi]; /* shortest path links */
dq->lpnlpi++;
dq->pnlps[dq->lpnlpi] = pnlp;
}
}
static void splitdq(deque_t *dq, int side, size_t index) {
if (side == DQ_FRONT)
dq->lpnlpi = index;
else
dq->fpnlpi = index;
}
static size_t finddqsplit(const deque_t *dq, pointnlink_t *pnlp) {
for (size_t index = dq->fpnlpi; index < dq->apex; index++)
if (ccw(*dq->pnlps[index + 1]->pp, *dq->pnlps[index]->pp, *pnlp->pp) == ISCCW)
return index;
for (size_t index = dq->lpnlpi; index > dq->apex; index--)
if (ccw(*dq->pnlps[index - 1]->pp, *dq->pnlps[index]->pp, *pnlp->pp) == ISCW)
return index;
return dq->apex;
}
static int pointintri(size_t trii, Ppoint_t *pp) {
int ei, sum;
for (ei = 0, sum = 0; ei < 3; ei++)
if (ccw(*LIST_GET(&tris, trii).e[ei].pnl0p->pp,
*LIST_GET(&tris, trii).e[ei].pnl1p->pp, *pp) != ISCW)
sum++;
return sum == 3 || sum == 0;
}
static int growops(size_t newopn) {
if (newopn <= opn)
return 0;
Ppoint_t *new_ops = realloc(ops, POINTSIZE * newopn);
if (new_ops == NULL) {
prerror("cannot realloc ops");
return -1;
}
ops = new_ops;
opn = newopn;
return 0;
}
|