1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <pathplan/pathutil.h>
#include <pathplan/tri.h>
#include <util/alloc.h>
static int triangulate(Ppoint_t **pointp, size_t pointn,
void (*fn)(void *, const Ppoint_t *), void *vc);
int ccw(Ppoint_t p1, Ppoint_t p2, Ppoint_t p3) {
double d = (p1.y - p2.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p1.x - p2.x);
return d > 0 ? ISCW : (d < 0 ? ISCCW : ISON);
}
static Ppoint_t point_indexer(void *base, size_t index) {
Ppoint_t **b = base;
return *b[index];
}
/* Ptriangulate:
* Return 0 on success; non-zero on error.
*/
int Ptriangulate(Ppoly_t *polygon, void (*fn)(void *, const Ppoint_t *),
void *vc) {
Ppoint_t **pointp;
const size_t pointn = polygon->pn;
pointp = gv_calloc(pointn, sizeof(Ppoint_t*));
for (size_t i = 0; i < pointn; i++)
pointp[i] = &(polygon->ps[i]);
assert(pointn >= 3);
if (triangulate(pointp, pointn, fn, vc) != 0) {
free(pointp);
return 1;
}
free(pointp);
return 0;
}
/* triangulate:
* Triangulates the given polygon.
* Returns non-zero if no diagonal exists.
*/
static int triangulate(Ppoint_t **pointp, size_t pointn,
void (*fn)(void *, const Ppoint_t *), void *vc) {
assert(pointn >= 3);
Ppoint_t A[3];
if (pointn > 3) {
for (size_t i = 0; i < pointn; i++) {
const size_t ip1 = (i + 1) % pointn;
const size_t ip2 = (i + 2) % pointn;
if (isdiagonal(i, ip2, pointp, pointn, point_indexer)) {
A[0] = *pointp[i];
A[1] = *pointp[ip1];
A[2] = *pointp[ip2];
fn(vc, A);
size_t j = 0;
for (i = 0; i < pointn; i++)
if (i != ip1)
pointp[j++] = pointp[i];
return triangulate(pointp, pointn - 1, fn, vc);
}
}
return -1;
} else {
A[0] = *pointp[0];
A[1] = *pointp[1];
A[2] = *pointp[2];
fn(vc, A);
}
return 0;
}
/// is pb between pa and pc?
static bool between(Ppoint_t pa, Ppoint_t pb, Ppoint_t pc) {
const Ppoint_t pba = {.x = pb.x - pa.x, .y = pb.y - pa.y};
const Ppoint_t pca = {.x = pc.x - pa.x, .y = pc.y - pa.y};
if (ccw(pa, pb, pc) != ISON)
return false;
return pca.x * pba.x + pca.y * pba.y >= 0 &&
pca.x * pca.x + pca.y * pca.y <= pba.x * pba.x + pba.y * pba.y;
}
/// line to line intersection
static bool intersects(Ppoint_t pa, Ppoint_t pb, Ppoint_t pc, Ppoint_t pd) {
int ccw1, ccw2, ccw3, ccw4;
if (ccw(pa, pb, pc) == ISON || ccw(pa, pb, pd) == ISON ||
ccw(pc, pd, pa) == ISON || ccw(pc, pd, pb) == ISON) {
if (between(pa, pb, pc) || between(pa, pb, pd) || between(pc, pd, pa) ||
between(pc, pd, pb))
return true;
} else {
ccw1 = ccw(pa, pb, pc) == ISCCW ? 1 : 0;
ccw2 = ccw(pa, pb, pd) == ISCCW ? 1 : 0;
ccw3 = ccw(pc, pd, pa) == ISCCW ? 1 : 0;
ccw4 = ccw(pc, pd, pb) == ISCCW ? 1 : 0;
return (ccw1 ^ ccw2) && (ccw3 ^ ccw4);
}
return false;
}
bool isdiagonal(size_t i, size_t ip2, void *pointp, size_t pointn,
indexer_t indexer) {
int res;
/* neighborhood test */
const size_t ip1 = (i + 1) % pointn;
const size_t im1 = (i + pointn - 1) % pointn;
/* If P[i] is a convex vertex [ i+1 left of (i-1,i) ]. */
if (ccw(indexer(pointp, im1), indexer(pointp, i), indexer(pointp, ip1)) == ISCCW)
res = ccw(indexer(pointp, i), indexer(pointp, ip2), indexer(pointp, im1)) == ISCCW &&
ccw(indexer(pointp, ip2), indexer(pointp, i), indexer(pointp, ip1)) == ISCCW;
/* Assume (i - 1, i, i + 1) not collinear. */
else
res = ccw(indexer(pointp, i), indexer(pointp, ip2), indexer(pointp, ip1)) == ISCW;
if (!res) {
return false;
}
/* check against all other edges */
for (size_t j = 0; j < pointn; j++) {
const size_t jp1 = (j + 1) % pointn;
if (!(j == i || jp1 == i || j == ip2 || jp1 == ip2))
if (intersects
(indexer(pointp, i), indexer(pointp, ip2), indexer(pointp, j), indexer(pointp, jp1))) {
return false;
}
}
return true;
}
|