File: visibility.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (353 lines) | stat: -rw-r--r-- 8,655 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <assert.h>
#include <pathplan/vis.h>
#include <stdbool.h>
#include <stdlib.h>
#include <util/alloc.h>

/* allocArray:
 * Allocate a VxV array of COORD values.
 * (array2 is a pointer to an array of pointers; the array is
 * accessed in row-major order.)
 * The values in the array are initialized to 0.
 * Add extra rows.
 */
static array2 allocArray(int V, int extra)
{
    int i;

    assert(V >= 0);
    array2 arr = gv_calloc(V + extra, sizeof(COORD*));
    COORD *p = gv_calloc((size_t)V * (size_t)V, sizeof(COORD));
    for (i = 0; i < V; i++) {
	arr[i] = p;
	p += V;
    }
    for (i = V; i < V + extra; i++)
	arr[i] = NULL;

    return arr;
}

/* area2:
 * Returns twice the area of triangle abc.
 */
COORD area2(Ppoint_t a, Ppoint_t b, Ppoint_t c)
{
    return (a.y - b.y) * (c.x - b.x) - (c.y - b.y) * (a.x - b.x);
}

/* wind:
 * Returns 1, 0, -1 if the points abc are counterclockwise,
 * collinear, or clockwise.
 */
int wind(Ppoint_t a, Ppoint_t b, Ppoint_t c)
{
    COORD w;

    w = (a.y - b.y) * (c.x - b.x) - (c.y - b.y) * (a.x - b.x);
    /* need to allow for small math errors.  seen with "gcc -O2 -mcpu=i686 -ffast-math" */
    return w > .0001 ? 1 : (w < -.0001 ? -1 : 0);
}

/* inBetween:
 * Return true if c is in (a,b), assuming a,b,c are collinear.
 */
static bool inBetween(Ppoint_t a, Ppoint_t b, Ppoint_t c)
{
    if (a.x != b.x)		/* not vertical */
	return (a.x < c.x && c.x < b.x) || (b.x < c.x && c.x < a.x);
    else
	return (a.y < c.y && c.y < b.y) || (b.y < c.y && c.y < a.y);
}

/* intersect:
 * Returns true if the segment [c,d] blocks a and b from seeing each other.
 * More specifically, returns true iff c or d lies on (a,b) or the two
 * segments intersect as open sets.
 */
static bool intersect(Ppoint_t a, Ppoint_t b, Ppoint_t c, Ppoint_t d)
{
    int a_abc;
    int a_abd;
    int a_cda;
    int a_cdb;

    a_abc = wind(a, b, c);
    if (a_abc == 0 && inBetween(a, b, c)) {
	return true;
    }
    a_abd = wind(a, b, d);
    if (a_abd == 0 && inBetween(a, b, d)) {
	return true;
    }
    a_cda = wind(c, d, a);
    a_cdb = wind(c, d, b);

    /* True if c and d are on opposite sides of ab,
     * and a and b are on opposite sides of cd.
     */
    return a_abc * a_abd < 0 && a_cda * a_cdb < 0;
}

/* in_cone:
 * Returns true iff point b is in the cone a0,a1,a2
 * NB: the cone is considered a closed set
 */
static bool in_cone(Ppoint_t a0, Ppoint_t a1, Ppoint_t a2, Ppoint_t b)
{
    int m = wind(b, a0, a1);
    int p = wind(b, a1, a2);

    if (wind(a0, a1, a2) > 0)
	return m >= 0 && p >= 0;	/* convex at a */
    else
	return m >= 0 || p >= 0;	/* reflex at a */
}

/* dist2:
 * Returns the square of the distance between points a and b.
 */
COORD dist2(Ppoint_t a, Ppoint_t b)
{
    COORD delx = a.x - b.x;
    COORD dely = a.y - b.y;

    return delx * delx + dely * dely;
}

/* dist:
 * Returns the distance between points a and b.
 */
static COORD dist(Ppoint_t a, Ppoint_t b)
{
    return sqrt(dist2(a, b));
}

static bool inCone(int i, int j, Ppoint_t pts[], int nextPt[], int prevPt[])
{
    return in_cone(pts[prevPt[i]], pts[i], pts[nextPt[i]], pts[j]);
}

/* clear:
 * Return true if no polygon line segment non-trivially intersects
 * the segment [pti,ptj], ignoring segments in [start,end).
 */
static bool clear(Ppoint_t pti, Ppoint_t ptj,
		 int start, int end,
		 int V, Ppoint_t pts[], int nextPt[])
{
    int k;

    for (k = 0; k < start; k++) {
	if (intersect(pti, ptj, pts[k], pts[nextPt[k]]))
	    return false;
    }
    for (k = end; k < V; k++) {
	if (intersect(pti, ptj, pts[k], pts[nextPt[k]]))
	    return false;
    }
    return true;
}

/* compVis:
 * Compute visibility graph of vertices of polygons.
 * Only do polygons from index startp to end.
 * If two nodes cannot see each other, the matrix entry is 0.
 * If two nodes can see each other, the matrix entry is the distance
 * between them.
 */
static void compVis(vconfig_t * conf) {
    int V = conf->N;
    Ppoint_t *pts = conf->P;
    int *nextPt = conf->next;
    int *prevPt = conf->prev;
    array2 wadj = conf->vis;
    int j, i, previ;
    COORD d;

    for (i = 0; i < V; i++) {
	/* add edge between i and previ.
	 * Note that this works for the cases of polygons of 1 and 2
	 * vertices, though needless work is done.
	 */
	previ = prevPt[i];
	d = dist(pts[i], pts[previ]);
	wadj[i][previ] = d;
	wadj[previ][i] = d;

	/* Check remaining, earlier vertices */
	if (previ == i - 1)
	    j = i - 2;
	else
	    j = i - 1;
	for (; j >= 0; j--) {
	    if (inCone(i, j, pts, nextPt, prevPt) &&
		inCone(j, i, pts, nextPt, prevPt) &&
		clear(pts[i], pts[j], V, V, V, pts, nextPt)) {
		/* if i and j see each other, add edge */
		d = dist(pts[i], pts[j]);
		wadj[i][j] = d;
		wadj[j][i] = d;
	    }
	}
    }
}

/* visibility:
 * Given a vconfig_t conf, representing polygonal barriers,
 * compute the visibility graph of the vertices of conf. 
 * The graph is stored in conf->vis. 
 */
void visibility(vconfig_t * conf)
{
    conf->vis = allocArray(conf->N, 2);
    compVis(conf);
}

/* polyhit:
 * Given a vconfig_t conf, as above, and a point,
 * return the index of the polygon that contains
 * the point, or else POLYID_NONE.
 */
static int polyhit(vconfig_t * conf, Ppoint_t p)
{
    int i;
    Ppoly_t poly;

    for (i = 0; i < conf->Npoly; i++) {
	poly.ps = &(conf->P[conf->start[i]]);
	poly.pn = (size_t)(conf->start[i + 1] - conf->start[i]);
	if (in_poly(poly, p))
	    return i;
    }
    return POLYID_NONE;
}

/* ptVis:
 * Given a vconfig_t conf, representing polygonal barriers,
 * and a point within one of the polygons, compute the point's
 * visibility vector relative to the vertices of the remaining
 * polygons, i.e., pretend the argument polygon is invisible.
 *
 * If pp is NIL, ptVis computes the visibility vector for p
 * relative to all barrier vertices.
 */
COORD *ptVis(vconfig_t * conf, int pp, Ppoint_t p)
{
    const int V = conf->N;
    Ppoint_t *pts = conf->P;
    int *nextPt = conf->next;
    int *prevPt = conf->prev;
    int k;
    int start, end;
    Ppoint_t pk;
    COORD d;

    COORD *vadj = gv_calloc(V + 2, sizeof(COORD));

    if (pp == POLYID_UNKNOWN)
	pp = polyhit(conf, p);
    if (pp >= 0) {
	start = conf->start[pp];
	end = conf->start[pp + 1];
    } else {
	start = V;
	end = V;
    }

    for (k = 0; k < start; k++) {
	pk = pts[k];
	if (in_cone(pts[prevPt[k]], pk, pts[nextPt[k]], p) &&
	    clear(p, pk, start, end, V, pts, nextPt)) {
	    /* if p and pk see each other, add edge */
	    d = dist(p, pk);
	    vadj[k] = d;
	} else
	    vadj[k] = 0;
    }

    for (k = start; k < end; k++)
	vadj[k] = 0;

    for (k = end; k < V; k++) {
	pk = pts[k];
	if (in_cone(pts[prevPt[k]], pk, pts[nextPt[k]], p) &&
	    clear(p, pk, start, end, V, pts, nextPt)) {
	    /* if p and pk see each other, add edge */
	    d = dist(p, pk);
	    vadj[k] = d;
	} else
	    vadj[k] = 0;
    }
    vadj[V] = 0;
    vadj[V + 1] = 0;

    return vadj;

}

/* directVis:
 * Given two points, return true if the points can directly see each other.
 * If a point is associated with a polygon, the edges of the polygon
 * are ignored when checking visibility.
 */
bool directVis(Ppoint_t p, int pp, Ppoint_t q, int qp, vconfig_t * conf)
{
    int V = conf->N;
    Ppoint_t *pts = conf->P;
    int *nextPt = conf->next;
    int k;
    int s1, e1;
    int s2, e2;

    if (pp < 0) {
	s1 = 0;
	e1 = 0;
	if (qp < 0) {
	    s2 = 0;
	    e2 = 0;
	} else {
	    s2 = conf->start[qp];
	    e2 = conf->start[qp + 1];
	}
    } else if (qp < 0) {
	s1 = 0;
	e1 = 0;
	s2 = conf->start[pp];
	e2 = conf->start[pp + 1];
    } else if (pp <= qp) {
	s1 = conf->start[pp];
	e1 = conf->start[pp + 1];
	s2 = conf->start[qp];
	e2 = conf->start[qp + 1];
    } else {
	s1 = conf->start[qp];
	e1 = conf->start[qp + 1];
	s2 = conf->start[pp];
	e2 = conf->start[pp + 1];
    }

    for (k = 0; k < s1; k++) {
	if (intersect(p, q, pts[k], pts[nextPt[k]]))
	    return false;
    }
    for (k = e1; k < s2; k++) {
	if (intersect(p, q, pts[k], pts[nextPt[k]]))
	    return false;
    }
    for (k = e2; k < V; k++) {
	if (intersect(p, q, pts[k], pts[nextPt[k]]))
	    return false;
    }
    return true;
}