1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
/**********************************************************
* See the LICENSE file for copyright information. *
**********************************************************/
#include "config.h"
#include <assert.h>
#include <rbtree/red_black_tree.h>
#include <stdio.h>
#include <stdlib.h>
/***********************************************************************/
/* FUNCTION: RBTreeCreate */
/**/
/* INPUTS: All the inputs are names of functions. CompFunc takes to */
/* void pointers to keys and returns 1 if the first argument is */
/* "greater than" the second. DestFunc takes a pointer to a key and */
/* destroys it in the appropriate manner when the node containing that */
/* key is deleted. */
/**/
/* OUTPUT: This function returns a pointer to the newly created */
/* red-black tree. */
/**/
/* Modifies Input: none */
/***********************************************************************/
rb_red_blk_tree* RBTreeCreate( int (*CompFunc) (const void*,const void*),
void (*DestFunc)(void *)) {
rb_red_blk_tree* newTree = NULL;
rb_red_blk_node* temp;
newTree= malloc(sizeof(rb_red_blk_tree));
if (newTree == NULL) {
return NULL;
}
newTree->nil = newTree->root = NULL;
newTree->Compare= CompFunc;
newTree->DestroyKey= DestFunc;
/* see the comment in the rb_red_blk_tree structure in red_black_tree.h */
/* for information on nil and root */
temp=newTree->nil= malloc(sizeof(rb_red_blk_node));
if (temp == NULL) {
free(newTree);
return NULL;
}
temp->parent=temp->left=temp->right=temp;
temp->red=0;
temp->key=0;
temp=newTree->root= malloc(sizeof(rb_red_blk_node));
if (temp == NULL) {
free(newTree->nil);
free(newTree);
return NULL;
}
temp->parent=temp->left=temp->right=newTree->nil;
temp->key=0;
temp->red=0;
return newTree;
}
/***********************************************************************/
/* FUNCTION: LeftRotate */
/**/
/* INPUTS: This takes a tree so that it can access the appropriate */
/* root and nil pointers, and the node to rotate on. */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input: tree, x */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. */
/***********************************************************************/
static void LeftRotate(rb_red_blk_tree* tree, rb_red_blk_node* x) {
rb_red_blk_node* y;
rb_red_blk_node* nil=tree->nil;
/* I originally wrote this function to use the sentinel for */
/* nil to avoid checking for nil. However this introduces a */
/* very subtle bug because sometimes this function modifies */
/* the parent pointer of nil. This can be a problem if a */
/* function which calls LeftRotate also uses the nil sentinel */
/* and expects the nil sentinel's parent pointer to be unchanged */
/* after calling this function. For example, when RBDeleteFixUP */
/* calls LeftRotate it expects the parent pointer of nil to be */
/* unchanged. */
y=x->right;
x->right=y->left;
if (y->left != nil) y->left->parent=x; /* used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
y->parent=x->parent;
/* instead of checking if x->parent is the root as in the book, we */
/* count on the root sentinel to implicitly take care of this case */
if( x == x->parent->left) {
x->parent->left=y;
} else {
x->parent->right=y;
}
y->left=x;
x->parent=y;
assert(!tree->nil->red && "nil not red in LeftRotate");
}
/***********************************************************************/
/* FUNCTION: RighttRotate */
/**/
/* INPUTS: This takes a tree so that it can access the appropriate */
/* root and nil pointers, and the node to rotate on. */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input?: tree, y */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. */
/***********************************************************************/
static void RightRotate(rb_red_blk_tree* tree, rb_red_blk_node* y) {
rb_red_blk_node* x;
rb_red_blk_node* nil=tree->nil;
/* I originally wrote this function to use the sentinel for */
/* nil to avoid checking for nil. However this introduces a */
/* very subtle bug because sometimes this function modifies */
/* the parent pointer of nil. This can be a problem if a */
/* function which calls LeftRotate also uses the nil sentinel */
/* and expects the nil sentinel's parent pointer to be unchanged */
/* after calling this function. For example, when RBDeleteFixUP */
/* calls LeftRotate it expects the parent pointer of nil to be */
/* unchanged. */
x=y->left;
y->left=x->right;
if (nil != x->right) x->right->parent=y; /*used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
/* instead of checking if x->parent is the root as in the book, we */
/* count on the root sentinel to implicitly take care of this case */
x->parent=y->parent;
if( y == y->parent->left) {
y->parent->left=x;
} else {
y->parent->right=x;
}
x->right=y;
y->parent=x;
assert(!tree->nil->red && "nil not red in RightRotate");
}
/***********************************************************************/
/* FUNCTION: TreeInsertHelp */
/**/
/* INPUTS: tree is the tree to insert into and z is the node to insert */
/**/
/* OUTPUT: none */
/**/
/* Modifies Input: tree, z */
/**/
/* EFFECTS: Inserts z into the tree as if it were a regular binary tree */
/* using the algorithm described in _Introduction_To_Algorithms_ */
/* by Cormen et al. This function is only intended to be called */
/* by the RBTreeInsert function and not by the user */
/***********************************************************************/
static void TreeInsertHelp(rb_red_blk_tree* tree, rb_red_blk_node* z) {
/* This function should only be called by InsertRBTree (see above) */
rb_red_blk_node* x;
rb_red_blk_node* y;
rb_red_blk_node* nil=tree->nil;
z->left=z->right=nil;
y=tree->root;
x=tree->root->left;
while( x != nil) {
y=x;
if (1 == tree->Compare(x->key,z->key)) { /* x.key > z.key */
x=x->left;
} else { /* x,key <= z.key */
x=x->right;
}
}
z->parent=y;
if ( (y == tree->root) ||
(1 == tree->Compare(y->key,z->key))) { /* y.key > z.key */
y->left=z;
} else {
y->right=z;
}
assert(!tree->nil->red && "nil not red in TreeInsertHelp");
}
/* Before calling Insert RBTree the node x should have its key set */
/***********************************************************************/
/* FUNCTION: RBTreeInsert */
/**/
/* INPUTS: tree is the red-black tree to insert a node which has a key */
/* pointed to by key. */
/**/
/* OUTPUT: This function returns a pointer to the newly inserted node */
/* which is guarunteed to be valid until this node is deleted. */
/* What this means is if another data structure stores this */
/* pointer then the tree does not need to be searched when this */
/* is to be deleted. */
/**/
/* Modifies Input: tree */
/**/
/* EFFECTS: Creates a node node which contains the appropriate key */
/* pointer and inserts it into the tree. */
/***********************************************************************/
rb_red_blk_node * RBTreeInsert(rb_red_blk_tree* tree, void* key) {
rb_red_blk_node * y;
rb_red_blk_node * x;
rb_red_blk_node * newNode;
x= malloc(sizeof(rb_red_blk_node));
if (x == NULL) {
return NULL;
}
x->key=key;
TreeInsertHelp(tree,x);
newNode=x;
x->red=1;
while(x->parent->red) { /* use sentinel instead of checking for root */
if (x->parent == x->parent->parent->left) {
y=x->parent->parent->right;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->right) {
x=x->parent;
LeftRotate(tree,x);
}
x->parent->red=0;
x->parent->parent->red=1;
RightRotate(tree,x->parent->parent);
}
} else { /* case for x->parent == x->parent->parent->right */
y=x->parent->parent->left;
if (y->red) {
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
} else {
if (x == x->parent->left) {
x=x->parent;
RightRotate(tree,x);
}
x->parent->red=0;
x->parent->parent->red=1;
LeftRotate(tree,x->parent->parent);
}
}
}
tree->root->left->red=0;
return newNode;
}
/***********************************************************************/
/* FUNCTION: TreeSuccessor */
/**/
/* INPUTS: tree is the tree in question, and x is the node we want the */
/* the successor of. */
/**/
/* OUTPUT: This function returns the successor of x or NULL if no */
/* successor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
rb_red_blk_node* TreeSuccessor(rb_red_blk_tree* tree,rb_red_blk_node* x) {
rb_red_blk_node* y;
rb_red_blk_node* nil=tree->nil;
rb_red_blk_node* root=tree->root;
if (nil != (y = x->right)) { /* assignment to y is intentional */
while(y->left != nil) { /* returns the minium of the right subtree of x */
y=y->left;
}
return y;
} else {
y=x->parent;
while(x == y->right) { /* sentinel used instead of checking for nil */
x=y;
y=y->parent;
}
if (y == root) return nil;
return y;
}
}
/***********************************************************************/
/* FUNCTION: Treepredecessor */
/**/
/* INPUTS: tree is the tree in question, and x is the node we want the */
/* the predecessor of. */
/**/
/* OUTPUT: This function returns the predecessor of x or NULL if no */
/* predecessor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
rb_red_blk_node* TreePredecessor(rb_red_blk_tree* tree, rb_red_blk_node* x) {
rb_red_blk_node* y;
rb_red_blk_node* nil=tree->nil;
rb_red_blk_node* root=tree->root;
if (nil != (y = x->left)) { /* assignment to y is intentional */
while(y->right != nil) { /* returns the maximum of the left subtree of x */
y=y->right;
}
return y;
} else {
y=x->parent;
while(x == y->left) {
if (y == root) return nil;
x=y;
y=y->parent;
}
return y;
}
}
/***********************************************************************/
/* FUNCTION: TreeDestHelper */
/**/
/* INPUTS: tree is the tree to destroy and x is the current node */
/**/
/* OUTPUT: none */
/**/
/* EFFECTS: This function recursively destroys the nodes of the tree */
/* postorder using the DestroyKey and DestroyInfo functions. */
/**/
/* Modifies Input: tree, x */
/**/
/* Note: This function should only be called by RBTreeDestroy */
/***********************************************************************/
static void TreeDestHelper(rb_red_blk_tree* tree, rb_red_blk_node* x) {
rb_red_blk_node* nil=tree->nil;
if (x != nil) {
TreeDestHelper(tree,x->left);
TreeDestHelper(tree,x->right);
tree->DestroyKey(x->key);
free(x);
}
}
/***********************************************************************/
/* FUNCTION: RBTreeDestroy */
/**/
/* INPUTS: tree is the tree to destroy */
/**/
/* OUTPUT: none */
/**/
/* EFFECT: Destroys the key and frees memory */
/**/
/* Modifies Input: tree */
/**/
/***********************************************************************/
void RBTreeDestroy(rb_red_blk_tree* tree) {
TreeDestHelper(tree,tree->root->left);
free(tree->root);
free(tree->nil);
free(tree);
}
/***********************************************************************/
/* FUNCTION: RBExactQuery */
/**/
/* INPUTS: tree is the tree to print and q is a pointer to the key */
/* we are searching for */
/**/
/* OUTPUT: returns the a node with key equal to q. If there are */
/* multiple nodes with key equal to q this function returns */
/* the one highest in the tree */
/**/
/* Modifies Input: none */
/**/
/***********************************************************************/
rb_red_blk_node* RBExactQuery(rb_red_blk_tree* tree, void* q) {
rb_red_blk_node* x=tree->root->left;
rb_red_blk_node* nil=tree->nil;
int compVal;
if (x == nil) return 0;
compVal = tree->Compare(x->key, q);
while(0 != compVal) {/*assignemnt*/
if (1 == compVal) { /* x->key > q */
x=x->left;
} else {
x=x->right;
}
if ( x == nil) return 0;
compVal = tree->Compare(x->key, q);
}
return x;
}
/***********************************************************************/
/* FUNCTION: RBDeleteFixUp */
/**/
/* INPUTS: tree is the tree to fix and x is the child of the spliced */
/* out node in RBTreeDelete. */
/**/
/* OUTPUT: none */
/**/
/* EFFECT: Performs rotations and changes colors to restore red-black */
/* properties after a node is deleted */
/**/
/* Modifies Input: tree, x */
/**/
/* The algorithm from this function is from _Introduction_To_Algorithms_ */
/***********************************************************************/
static void RBDeleteFixUp(rb_red_blk_tree* tree, rb_red_blk_node* x) {
rb_red_blk_node* root=tree->root->left;
rb_red_blk_node* w;
while( (!x->red) && (root != x)) {
if (x == x->parent->left) {
w=x->parent->right;
if (w->red) {
w->red=0;
x->parent->red=1;
LeftRotate(tree,x->parent);
w=x->parent->right;
}
if ( (!w->right->red) && (!w->left->red) ) {
w->red=1;
x=x->parent;
} else {
if (!w->right->red) {
w->left->red=0;
w->red=1;
RightRotate(tree,w);
w=x->parent->right;
}
w->red=x->parent->red;
x->parent->red=0;
w->right->red=0;
LeftRotate(tree,x->parent);
x=root; /* this is to exit while loop */
}
} else { // the code below has left and right switched from above
w=x->parent->left;
if (w->red) {
w->red=0;
x->parent->red=1;
RightRotate(tree,x->parent);
w=x->parent->left;
}
if ( (!w->right->red) && (!w->left->red) ) {
w->red=1;
x=x->parent;
} else {
if (!w->left->red) {
w->right->red=0;
w->red=1;
LeftRotate(tree,w);
w=x->parent->left;
}
w->red=x->parent->red;
x->parent->red=0;
w->left->red=0;
RightRotate(tree,x->parent);
x=root; /* this is to exit while loop */
}
}
}
x->red=0;
assert(!tree->nil->red && "nil not black in RBDeleteFixUp");
}
/***********************************************************************/
/* FUNCTION: RBDelete */
/**/
/* INPUTS: tree is the tree to delete node z from */
/**/
/* OUTPUT: none */
/**/
/* EFFECT: Deletes z from tree and frees the key of z */
/* using DestroyKey. Then calls */
/* RBDeleteFixUp to restore red-black properties */
/**/
/* Modifies Input: tree, z */
/**/
/* The algorithm from this function is from _Introduction_To_Algorithms_ */
/***********************************************************************/
void RBDelete(rb_red_blk_tree* tree, rb_red_blk_node* z){
rb_red_blk_node* y;
rb_red_blk_node* x;
rb_red_blk_node* nil=tree->nil;
rb_red_blk_node* root=tree->root;
y= ((z->left == nil) || (z->right == nil)) ? z : TreeSuccessor(tree,z);
x= (y->left == nil) ? y->right : y->left;
if (root == (x->parent = y->parent)) { /* assignment of y->p to x->p is intentional */
root->left=x;
} else {
if (y == y->parent->left) {
y->parent->left=x;
} else {
y->parent->right=x;
}
}
if (y != z) { /* y should not be nil in this case */
assert(y!=tree->nil && "y is nil in RBDelete");
/* y is the node to splice out and x is its child */
if (!(y->red)) RBDeleteFixUp(tree,x);
tree->DestroyKey(z->key);
y->left=z->left;
y->right=z->right;
y->parent=z->parent;
y->red=z->red;
z->left->parent=z->right->parent=y;
if (z == z->parent->left) {
z->parent->left=y;
} else {
z->parent->right=y;
}
free(z);
} else {
tree->DestroyKey(y->key);
if (!(y->red)) RBDeleteFixUp(tree,x);
free(y);
}
assert(!tree->nil->red && "nil not black in RBDelete");
}
|