1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
///////////////////////////////////////
// //
// This file contains the functions //
// for constructing and managing the //
// hierarchy structure //
// //
///////////////////////////////////////
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <assert.h>
#include <common/arith.h>
#include <topfish/hierarchy.h>
#include <util/alloc.h>
/////////////////////////
// Some utilities for //
// 'maxmatch(..)' //
/////////////////////////
static double
unweighted_common_fraction(v_data * graph, int v, int u, float *v_vector)
{
// returns: |N(v) & N(u)| / |N(v) or N(u)|
// v_vector[i]>0 <==> i is neighbor of v or is v itself
int neighbor;
int num_shared_neighbors = 0;
int j;
for (j = 0; j < graph[u].nedges; j++) {
neighbor = graph[u].edges[j];
if (v_vector[neighbor] > 0) {
// a shared neighobr
num_shared_neighbors++;
}
}
// parallel to the weighted version:
//return 2*num_shared_neighbors/(graph[v].nedges+graph[u].nedges);
// more natural
return ((double) num_shared_neighbors) / (graph[v].nedges +
graph[u].nedges -
num_shared_neighbors);
}
static void fill_neighbors_vec(v_data *graph, int vtx, float *vtx_vec) {
int j;
if (graph[0].ewgts != NULL) {
for (j = 0; j < graph[vtx].nedges; j++) {
vtx_vec[graph[vtx].edges[j]] = fabsf(graph[vtx].ewgts[j]); // use fabsf for the self loop
}
} else {
for (j = 0; j < graph[vtx].nedges; j++) {
vtx_vec[graph[vtx].edges[j]] = 1;
}
}
}
static void
fill_neighbors_vec_unweighted(v_data * graph, int vtx, float *vtx_vec)
{
// a node is a neighbor of itself!
int j;
for (j = 0; j < graph[vtx].nedges; j++) {
vtx_vec[graph[vtx].edges[j]] = 1;
}
}
static void empty_neighbors_vec(v_data * graph, int vtx, float *vtx_vec)
{
int j;
for (j = 0; j < graph[vtx].nedges; j++) {
vtx_vec[graph[vtx].edges[j]] = 0;
}
}
static int dist3(v_data * graph, int node1, int node2)
{
// succeeds if the graph theoretic distance between the nodes is no more than 3
int i, j, k;
int u, v;
for (i = 1; i < graph[node1].nedges; i++) {
u = graph[node1].edges[i];
if (u == node2) {
return 1;
}
for (j = 1; j < graph[u].nedges; j++) {
v = graph[u].edges[j];
if (v == node2) {
return 1;
}
for (k = 1; k < graph[v].nedges; k++) {
if (graph[v].edges[k] == node2) {
return 1;
}
}
}
}
return 0;
}
#define A 1.0
#define B 1.0
#define C 3.0
#define D 1.0
static double ddist(ex_vtx_data * geom_graph, int v, int u)
{
// Euclidean distance between nodes 'v' and 'u'
double x_v = geom_graph[v].x_coord, y_v = geom_graph[v].y_coord,
x_u = geom_graph[u].x_coord, y_u = geom_graph[u].y_coord;
return hypot(x_v - x_u, y_v - y_u);
}
extern void quicksort_place(double *, int *, size_t size);
static int
maxmatch(v_data * graph, /* array of vtx data for graph */
ex_vtx_data * geom_graph, /* array of vtx data for graph */
int nvtxs, /* number of vertices in graph */
int *mflag, /* flag indicating vtx selected or not */
bool dist2_limit
)
/*
Compute a matching of the nodes set.
The matching is not based only on the edge list of 'graph',
which might be too small,
but on the wider edge list of 'geom_graph' (which includes 'graph''s edges)
We match nodes that are close both in the graph-theoretical sense and
in the geometry sense (in the layout)
*/
{
int *order; /* random ordering of vertices */
int *iptr, *jptr; /* loops through integer arrays */
int vtx; /* vertex to process next */
int neighbor; /* neighbor of a vertex */
int nmerged = 0; /* number of edges in matching */
int i, j; /* loop counters */
float max_norm_edge_weight;
double inv_size;
double *matchability = gv_calloc(nvtxs, sizeof(double));
double min_edge_len;
double closest_val = -1, val;
int closest_neighbor;
float *vtx_vec = gv_calloc(nvtxs, sizeof(float));
float *weighted_vtx_vec = gv_calloc(nvtxs, sizeof(float));
// gather statistics, to enable normalizing the values
double avg_edge_len = 0, avg_deg_2 = 0;
int nedges = 0;
for (i = 0; i < nvtxs; i++) {
avg_deg_2 += graph[i].nedges;
for (j = 1; j < graph[i].nedges; j++) {
avg_edge_len += ddist(geom_graph, i, graph[i].edges[j]);
nedges++;
}
}
avg_edge_len /= nedges;
avg_deg_2 /= nvtxs;
avg_deg_2 *= avg_deg_2;
// the normalized edge weight of edge <v,u> is defined as:
// weight(<v,u>)/sqrt(size(v)*size(u))
// Now we compute the maximal normalized weight
if (graph[0].ewgts != NULL) {
max_norm_edge_weight = -1;
for (i = 0; i < nvtxs; i++) {
inv_size = sqrt(1.0 / geom_graph[i].size);
for (j = 1; j < graph[i].nedges; j++) {
if (graph[i].ewgts[j] * inv_size /
sqrt((float) geom_graph[graph[i].edges[j]].size) >
max_norm_edge_weight) {
max_norm_edge_weight =
(float) (graph[i].ewgts[j] * inv_size /
sqrt((double)
geom_graph[graph[i].edges[j]].size));
}
}
}
} else {
max_norm_edge_weight = 1;
}
/* Now determine the order of the vertices. */
iptr = order = gv_calloc(nvtxs, sizeof(int));
jptr = mflag;
for (i = 0; i < nvtxs; i++) {
*(iptr++) = i;
*(jptr++) = -1;
}
// Option 2: sort the nodes beginning with the ones highly approriate for matching
#ifdef DEBUG
srand(0);
#endif
for (i = 0; i < nvtxs; i++) {
vtx = order[i];
matchability[vtx] = graph[vtx].nedges; // we less want to match high degree nodes
matchability[vtx] += geom_graph[vtx].size; // we less want to match large sized nodes
min_edge_len = 1e99;
for (j = 1; j < graph[vtx].nedges; j++) {
min_edge_len =
MIN(min_edge_len,
ddist(geom_graph, vtx,
graph[vtx].edges[j]) / avg_edge_len);
}
matchability[vtx] += min_edge_len; // we less want to match distant nodes
matchability[vtx] += ((double) rand()) / RAND_MAX; // add some randomness
}
quicksort_place(matchability, order, nvtxs);
free(matchability);
// Start determining the matched pairs
for (i = 0; i < nvtxs; i++) {
vtx_vec[i] = 0;
}
for (i = 0; i < nvtxs; i++) {
weighted_vtx_vec[i] = 0;
}
// relative weights of the different criteria
for (i = 0; i < nvtxs; i++) {
vtx = order[i];
if (mflag[vtx] >= 0) { /* already matched. */
continue;
}
inv_size = sqrt(1.0 / geom_graph[vtx].size);
fill_neighbors_vec(graph, vtx, weighted_vtx_vec);
fill_neighbors_vec_unweighted(graph, vtx, vtx_vec);
closest_neighbor = -1;
/*
We match node i with the "closest" neighbor, based on 4 criteria:
(1) (Weighted) fraction of common neighbors (measured on orig. graph)
(2) AvgDeg*AvgDeg/(deg(vtx)*deg(neighbor)) (degrees measured on orig. graph)
(3) AvgEdgeLen/dist(vtx,neighbor)
(4) Weight of normalized direct connection between nodes (measured on orig. graph)
*/
for (j = 1; j < geom_graph[vtx].nedges; j++) {
neighbor = geom_graph[vtx].edges[j];
if (mflag[neighbor] >= 0) { /* already matched. */
continue;
}
// (1):
val =
A * unweighted_common_fraction(graph, vtx, neighbor,
vtx_vec);
if (val == 0 && (dist2_limit || !dist3(graph, vtx, neighbor))) {
// graph theoretical distance is larger than 3 (or 2 if '!dist3(graph, vtx, neighbor)' is commented)
// nodes cannot be matched
continue;
}
// (2)
val +=
B * avg_deg_2 / (graph[vtx].nedges *
graph[neighbor].nedges);
// (3)
val += C * avg_edge_len / ddist(geom_graph, vtx, neighbor);
// (4)
val +=
(weighted_vtx_vec[neighbor] * inv_size /
sqrt((float) geom_graph[neighbor].size)) /
max_norm_edge_weight;
if (val > closest_val || closest_neighbor == -1) {
closest_neighbor = neighbor;
closest_val = val;
}
}
if (closest_neighbor != -1) {
mflag[vtx] = closest_neighbor;
mflag[closest_neighbor] = vtx;
nmerged++;
}
empty_neighbors_vec(graph, vtx, vtx_vec);
empty_neighbors_vec(graph, vtx, weighted_vtx_vec);
}
free(order);
free(vtx_vec);
free(weighted_vtx_vec);
return (nmerged);
}
/* Construct mapping from original graph nodes to coarsened graph nodes */
static void makev2cv(int *mflag, /* flag indicating vtx selected or not */
int nvtxs, /* number of vtxs in original graph */
int *v2cv, /* mapping from vtxs to coarsened vtxs */
int *cv2v /* mapping from coarsened vtxs to vtxs */
)
{
int i, j; /* loop counters */
j = 0;
for (i = 0; i < nvtxs; i++) {
if (mflag[i] < 0) { // unmatched node
v2cv[i] = j;
cv2v[2 * j] = i;
cv2v[2 * j + 1] = -1;
j++;
} else if (mflag[i] > i) { // matched node
v2cv[i] = j;
v2cv[mflag[i]] = j;
cv2v[2 * j] = i;
cv2v[2 * j + 1] = mflag[i];
j++;
}
}
}
static int make_coarse_graph(v_data * graph, /* array of vtx data for graph */
int nedges, /* number of edges in graph */
v_data ** cgp, /* coarsened version of graph */
int cnvtxs, /* number of vtxs in coarsened graph */
int *v2cv, /* mapping from vtxs to coarsened vtxs */
int *cv2v /* mapping from coarsened vtxs to vtxs */
)
// This function takes the information about matched pairs
// and use it to contract these pairs and build a coarse graph
{
int j, cv, v, neighbor, cv_nedges;
int cnedges = 0; /* number of edges in coarsened graph */
v_data *cgraph; /* coarsened version of graph */
int *index = gv_calloc(cnvtxs, sizeof(int));
float intra_weight;
/* An upper bound on the number of coarse graph edges. */
int maxCnedges = nedges; // do not subtract (nvtxs-cnvtxs) because we do not contract only along edges
int *edges;
float *eweights;
/* Now allocate space for the new graph. Overeallocate and realloc later. */
cgraph = gv_calloc(cnvtxs, sizeof(v_data));
edges = gv_calloc(2 * maxCnedges + cnvtxs, sizeof(int));
eweights = gv_calloc(2 * maxCnedges + cnvtxs, sizeof(float));
if (graph[0].ewgts != NULL) {
// use edge weights
for (cv = 0; cv < cnvtxs; cv++) {
intra_weight = 0;
cgraph[cv].edges = edges;
cgraph[cv].ewgts = eweights;
cv_nedges = 1;
v = cv2v[2 * cv];
for (j = 1; j < graph[v].nedges; j++) {
neighbor = v2cv[graph[v].edges[j]];
if (neighbor == cv) {
intra_weight = 2 * graph[v].ewgts[j]; // count both directions of the intra-edge
continue;
}
if (index[neighbor] == 0) { // new neighbor
index[neighbor] = cv_nedges;
cgraph[cv].edges[cv_nedges] = neighbor;
cgraph[cv].ewgts[cv_nedges] = graph[v].ewgts[j];
cv_nedges++;
} else {
cgraph[cv].ewgts[index[neighbor]] += graph[v].ewgts[j];
}
}
cgraph[cv].ewgts[0] = graph[v].ewgts[0];
if ((v = cv2v[2 * cv + 1]) != -1) {
for (j = 1; j < graph[v].nedges; j++) {
neighbor = v2cv[graph[v].edges[j]];
if (neighbor == cv)
continue;
if (index[neighbor] == 0) { // new neighbor
index[neighbor] = cv_nedges;
cgraph[cv].edges[cv_nedges] = neighbor;
cgraph[cv].ewgts[cv_nedges] = graph[v].ewgts[j];
cv_nedges++;
} else {
cgraph[cv].ewgts[index[neighbor]] +=
graph[v].ewgts[j];
}
}
cgraph[cv].ewgts[0] += graph[v].ewgts[0] + intra_weight;
}
cgraph[cv].nedges = cv_nedges;
cgraph[cv].edges[0] = cv;
edges += cv_nedges;
eweights += cv_nedges;
cnedges += cv_nedges;
for (j = 1; j < cgraph[cv].nedges; j++)
index[cgraph[cv].edges[j]] = 0;
}
} else { // fine graph is unweighted
int internal_weight = 0;
for (cv = 0; cv < cnvtxs; cv++) {
cgraph[cv].edges = edges;
cgraph[cv].ewgts = eweights;
cv_nedges = 1;
v = cv2v[2 * cv];
for (j = 1; j < graph[v].nedges; j++) {
neighbor = v2cv[graph[v].edges[j]];
if (neighbor == cv) {
internal_weight = 2;
continue;
}
if (index[neighbor] == 0) { // new neighbor
index[neighbor] = cv_nedges;
cgraph[cv].edges[cv_nedges] = neighbor;
cgraph[cv].ewgts[cv_nedges] = -1;
cv_nedges++;
} else {
cgraph[cv].ewgts[index[neighbor]]--;
}
}
cgraph[cv].ewgts[0] = (float) graph[v].edges[0]; // this is our trick to store the weights on the diag in an unweighted graph
if ((v = cv2v[2 * cv + 1]) != -1) {
for (j = 1; j < graph[v].nedges; j++) {
neighbor = v2cv[graph[v].edges[j]];
if (neighbor == cv)
continue;
if (index[neighbor] == 0) { // new neighbor
index[neighbor] = cv_nedges;
cgraph[cv].edges[cv_nedges] = neighbor;
cgraph[cv].ewgts[cv_nedges] = -1;
cv_nedges++;
} else {
cgraph[cv].ewgts[index[neighbor]]--;
}
}
// we subtract the weight of the intra-edge that was counted twice
cgraph[cv].ewgts[0] +=
(float) graph[v].edges[0] - internal_weight;
// In a case the edge weights are defined as positive:
//cgraph[cv].ewgts[0] += (float) graph[v].edges[0]+internal_weight;
}
cgraph[cv].nedges = cv_nedges;
cgraph[cv].edges[0] = cv;
edges += cv_nedges;
eweights += cv_nedges;
cnedges += cv_nedges;
for (j = 1; j < cgraph[cv].nedges; j++)
index[cgraph[cv].edges[j]] = 0;
}
}
cnedges -= cnvtxs;
cnedges /= 2;
free(index);
*cgp = cgraph;
return cnedges;
}
static int
make_coarse_ex_graph (
ex_vtx_data * graph, /* array of vtx data for graph */
int nedges, /* number of edges in graph */
ex_vtx_data ** cgp, /* coarsened version of graph */
int cnvtxs, /* number of vtxs in coarsened graph */
int *v2cv, /* mapping from vtxs to coarsened vtxs */
int *cv2v /* mapping from coarsened vtxs to vtxs */
)
// This function takes the information about matched pairs
// and use it to contract these pairs and build a coarse ex_graph
{
int cnedges; /* number of edges in coarsened graph */
ex_vtx_data *cgraph; /* coarsened version of graph */
int j, cv, v, neighbor, cv_nedges;
int *index = gv_calloc(cnvtxs, sizeof(int));
int *edges;
/* An upper bound on the number of coarse graph edges. */
cnedges = nedges;
/* Now allocate space for the new graph. Overeallocate and realloc later. */
cgraph = gv_calloc(cnvtxs, sizeof(ex_vtx_data));
edges = gv_calloc(2 * cnedges + cnvtxs, sizeof(int));
for (cv = 0; cv < cnvtxs; cv++) {
cgraph[cv].edges = edges;
cv_nedges = 1;
v = cv2v[2 * cv];
for (j = 1; j < graph[v].nedges; j++) {
neighbor = v2cv[graph[v].edges[j]];
if (neighbor == cv) {
continue;
}
if (index[neighbor] == 0) { // new neighbor
index[neighbor] = cv_nedges;
cgraph[cv].edges[cv_nedges] = neighbor;
cv_nedges++;
}
}
cgraph[cv].size = graph[v].size;
cgraph[cv].x_coord = graph[v].x_coord;
cgraph[cv].y_coord = graph[v].y_coord;
if ((v = cv2v[2 * cv + 1]) != -1) {
for (j = 1; j < graph[v].nedges; j++) {
neighbor = v2cv[graph[v].edges[j]];
if (neighbor == cv)
continue;
if (index[neighbor] == 0) { // new neighbor
index[neighbor] = cv_nedges;
cgraph[cv].edges[cv_nedges] = neighbor;
cv_nedges++;
}
}
// compute new coord's as a weighted average of the old ones
cgraph[cv].x_coord =
(cgraph[cv].size * cgraph[cv].x_coord +
graph[v].size * graph[v].x_coord) / (cgraph[cv].size +
graph[v].size);
cgraph[cv].y_coord =
(cgraph[cv].size * cgraph[cv].y_coord +
graph[v].size * graph[v].y_coord) / (cgraph[cv].size +
graph[v].size);
cgraph[cv].size += graph[v].size;
}
cgraph[cv].nedges = cv_nedges;
cgraph[cv].edges[0] = cv;
edges += cv_nedges;
for (j = 1; j < cgraph[cv].nedges; j++)
index[cgraph[cv].edges[j]] = 0;
}
free(index);
*cgp = cgraph;
return cnedges;
}
static void
coarsen_match (
v_data * graph, /* graph to be matched */
ex_vtx_data* geom_graph, /* another graph (with coords) on the same nodes */
int nvtxs, /* number of vertices in graph */
int nedges, /* number of edges in graph */
int geom_nedges, /* number of edges in geom_graph */
v_data ** cgraph, /* coarsened version of graph */
ex_vtx_data ** cgeom_graph, /* coarsened version of geom_graph */
int *cnp, /* number of vtxs in coarsened graph */
int *cnedges, /* number of edges in coarsened graph */
int *cgeom_nedges, /* number of edges in coarsened geom_graph */
int **v2cvp, /* reference from vertices to coarse vertices */
int **cv2vp, /* reference from vertices to coarse vertices */
bool dist2_limit
)
/*
* This function gets two graphs with the same node set and
* constructs two corresponding coarsened graphs of about
* half the size
*/
{
int *mflag; /* flag indicating vtx matched or not */
int nmerged; /* number of edges contracted */
int *v2cv; /* reference from vertices to coarse vertices */
int *cv2v; /* reference from vertices to coarse vertices */
int cnvtxs;
/* Allocate and initialize space. */
mflag = gv_calloc(nvtxs, sizeof(int));
/* Find a maximal matching in the graphs */
nmerged = maxmatch(graph, geom_graph, nvtxs, mflag, dist2_limit);
/* Now construct coarser graph by contracting along matching edges. */
/* Pairs of values in mflag array indicate matched vertices. */
/* A negative value indicates that vertex is unmatched. */
*cnp = cnvtxs = nvtxs - nmerged;
*v2cvp = v2cv = gv_calloc(nvtxs, sizeof(int));
*cv2vp = cv2v = gv_calloc(2 * cnvtxs, sizeof(int));
makev2cv(mflag, nvtxs, v2cv, cv2v);
free(mflag);
*cnedges = make_coarse_graph(graph, nedges, cgraph, cnvtxs, v2cv, cv2v);
*cgeom_nedges = make_coarse_ex_graph(geom_graph, geom_nedges, cgeom_graph,
cnvtxs, v2cv, cv2v);
}
static v_data *cpGraph(v_data * graph, int n, int nedges)
{
float *ewgts = NULL;
int i, j;
if (graph == NULL || n == 0) {
return NULL;
}
v_data *cpGraph = gv_calloc(n, sizeof(v_data));
int *edges = gv_calloc(2 * nedges + n, sizeof(int));
if (graph[0].ewgts != NULL) {
ewgts = gv_calloc(2 * nedges + n, sizeof(float));
}
for (i = 0; i < n; i++) {
cpGraph[i] = graph[i];
cpGraph[i].edges = edges;
cpGraph[i].ewgts = ewgts;
for (j = 0; j < graph[i].nedges; j++) {
edges[j] = graph[i].edges[j];
}
edges += graph[i].nedges;
if (ewgts != NULL) {
for (j = 0; j < graph[i].nedges; j++) {
ewgts[j] = graph[i].ewgts[j];
}
ewgts += graph[i].nedges;
}
}
return cpGraph;
}
static ex_vtx_data *cpExGraph(ex_vtx_data * graph, int n, int nedges)
{
int i, j;
if (graph == NULL || n == 0) {
return NULL;
}
ex_vtx_data *cpGraph = gv_calloc(n, sizeof(ex_vtx_data));
int *edges = gv_calloc(2 * nedges + n, sizeof(int));
for (i = 0; i < n; i++) {
cpGraph[i] = graph[i];
cpGraph[i].edges = edges;
for (j = 0; j < graph[i].nedges; j++) {
edges[j] = graph[i].edges[j];
}
edges += graph[i].nedges;
}
return cpGraph;
}
Hierarchy *create_hierarchy(v_data *graph, int nvtxs, int nedges,
ex_vtx_data *geom_graph, int ngeom_edges,
bool dist2_limit) {
int cur_level;
Hierarchy *hierarchy = gv_alloc(sizeof(Hierarchy));
int cngeom_edges = ngeom_edges;
ex_vtx_data *geom_graph_level;
int nodeIndex = 0;
int i, j;
static const int min_nvtxs = 20;
int nlevels = MAX(5, 10 * (int) log((float) (nvtxs / min_nvtxs))); // just an estimate
hierarchy->graphs = gv_calloc(nlevels, sizeof(v_data*));
hierarchy->geom_graphs = gv_calloc(nlevels, sizeof(ex_vtx_data*));
hierarchy->nvtxs = gv_calloc(nlevels, sizeof(int));
hierarchy->nedges = gv_calloc(nlevels, sizeof(int));
hierarchy->v2cv = gv_calloc(nlevels, sizeof(int*));
hierarchy->cv2v = gv_calloc(nlevels, sizeof(int*));
hierarchy->graphs[0] = cpGraph(graph, nvtxs, nedges);
hierarchy->geom_graphs[0] = cpExGraph(geom_graph, nvtxs, ngeom_edges);
hierarchy->nvtxs[0] = nvtxs;
hierarchy->nedges[0] = nedges;
for (cur_level = 0;
hierarchy->nvtxs[cur_level] > min_nvtxs
&& cur_level < 50 /*nvtxs/10 */ ; cur_level++) {
if (cur_level == nlevels - 1) { // we have to allocate more space
hierarchy->graphs =
gv_recalloc(hierarchy->graphs, nlevels, nlevels * 2, sizeof(v_data*));
hierarchy->geom_graphs =
gv_recalloc(hierarchy->geom_graphs, nlevels, nlevels * 2, sizeof(ex_vtx_data*));
hierarchy->nvtxs = gv_recalloc(hierarchy->nvtxs, nlevels, nlevels * 2, sizeof(int));
hierarchy->nedges = gv_recalloc(hierarchy->nedges, nlevels, nlevels * 2, sizeof(int));
hierarchy->v2cv = gv_recalloc(hierarchy->v2cv, nlevels, nlevels * 2, sizeof(int*));
hierarchy->cv2v = gv_recalloc(hierarchy->cv2v, nlevels, nlevels * 2, sizeof(int*));
nlevels *= 2;
}
ngeom_edges = cngeom_edges;
coarsen_match
(hierarchy->graphs[cur_level],
hierarchy->geom_graphs[cur_level],
hierarchy->nvtxs[cur_level], hierarchy->nedges[cur_level],
ngeom_edges, &hierarchy->graphs[cur_level + 1],
&hierarchy->geom_graphs[cur_level + 1],
&hierarchy->nvtxs[cur_level + 1],
&hierarchy->nedges[cur_level + 1], &cngeom_edges,
&hierarchy->v2cv[cur_level], &hierarchy->cv2v[cur_level + 1],
dist2_limit);
}
hierarchy->nlevels = cur_level + 1;
// assign consecutive global identifiers to all nodes on hierarchy
for (i = 0; i < hierarchy->nlevels; i++) {
geom_graph_level = hierarchy->geom_graphs[i];
for (j = 0; j < hierarchy->nvtxs[i]; j++) {
geom_graph_level[j].globalIndex = nodeIndex;
nodeIndex++;
}
}
hierarchy->maxNodeIndex = nodeIndex;
return hierarchy;
}
static double
dist_from_foci(ex_vtx_data * graph, int node, int *foci, int num_foci)
{
// compute minimum distance of 'node' from the set 'foci'
int i;
double distance = ddist(graph, node, foci[0]);
for (i = 1; i < num_foci; i++) {
distance = MIN(distance, ddist(graph, node, foci[i]));
}
return distance;
}
/* set_active_levels:
* Compute the "active level" field of each node in the hierarchy.
* Note that if the active level is lower than the node's level, the node
* is "split" in the presentation; if the active level is higher than
* the node's level, then the node is aggregated into a coarser node.
* If the active level equals the node's level then the node is currently shown
*/
void
set_active_levels(Hierarchy * hierarchy, int *foci_nodes, int num_foci,
levelparms_t* parms)
{
int min_level = 0;
ex_vtx_data *graph = hierarchy->geom_graphs[min_level]; // finest graph
int n = hierarchy->nvtxs[min_level];
// compute distances from foci nodes
int *nodes = gv_calloc(n, sizeof(int));
double *distances = gv_calloc(n, sizeof(double));
for (int i = 0; i < n; i++) {
nodes[i] = i;
distances[i] = dist_from_foci(graph, i, foci_nodes, num_foci);
}
// sort nodes according to their distance from foci
quicksort_place(distances, nodes, n);
/* compute *desired* levels of fine nodes by distributing them into buckets
* The sizes of the buckets is a geometric series with
* factor: 'coarsening_rate'
*/
int level = min_level;
int group_size = parms->num_fine_nodes * num_foci;
int thresh = group_size;
for (int i = 0; i < n; i++) {
const int vtx = nodes[i];
if (i > thresh && level < hierarchy->nlevels - 1) {
level++;
group_size = (int) (group_size * parms->coarsening_rate);
thresh += group_size;
}
graph[vtx].active_level = level;
}
// Fine-to-coarse sweep:
//----------------------
// Propagate levels to all coarse nodes and determine final levels
// at lowest meeting points. Note that nodes can be active in
// lower (finer) levels than what originally desired, since if 'u'
// and 'v' are merged, than the active level of '{u,v}' will be
// the minimum of the active levels of 'u' and 'v'
for (level = min_level + 1; level < hierarchy->nlevels; level++) {
ex_vtx_data *const cgraph = hierarchy->geom_graphs[level];
graph = hierarchy->geom_graphs[level - 1];
const int *const cv2v = hierarchy->cv2v[level];
n = hierarchy->nvtxs[level];
for (int i = 0; i < n; i++) {
const int v = cv2v[2 * i];
const int u = cv2v[2 * i + 1];
if (u >= 0) { // cv is decomposed from 2 fine nodes
if (graph[v].active_level < level
|| graph[u].active_level < level) {
// At least one of the nodes should be active at a lower level,
// in this case both children are active at a lower level
// and we don't wait till they are merged
graph[v].active_level =
MIN(graph[v].active_level, level - 1);
graph[u].active_level =
MIN(graph[u].active_level, level - 1);
}
// The node with the finer (lower) active level determines the coarse active level
cgraph[i].active_level =
MIN(graph[v].active_level, graph[u].active_level);
} else {
cgraph[i].active_level = graph[v].active_level;
}
}
}
// Coarse-to-fine sweep:
//----------------------
// Propagate final levels all the way to fine nodes
for (level = hierarchy->nlevels - 1; level > 0; level--) {
ex_vtx_data *const cgraph = hierarchy->geom_graphs[level];
graph = hierarchy->geom_graphs[level - 1];
const int *const cv2v = hierarchy->cv2v[level];
n = hierarchy->nvtxs[level];
for (int i = 0; i < n; i++) {
if (cgraph[i].active_level < level) {
continue;
}
// active level has been already reached, copy level to children
const int v = cv2v[2 * i];
const int u = cv2v[2 * i + 1];
graph[v].active_level = cgraph[i].active_level;
if (u >= 0) {
graph[u].active_level = cgraph[i].active_level;
}
}
}
free(nodes);
free(distances);
}
/* findClosestActiveNode:
* Given (x,y) in physical coords, check if node is closer to this point
* than previous setting. If so, reset values.
* If node is not active, recurse down finer levels.
* Return closest distance squared.
*/
static double
findClosestActiveNode(Hierarchy * hierarchy, int node,
int level, double x, double y,
double closest_dist, int *closest_node,
int *closest_node_level)
{
ex_vtx_data *graph;
graph = hierarchy->geom_graphs[level];
if (graph[node].active_level == level)
{ // node is active
double delx = x - graph[node].physical_x_coord;
double dely = y - graph[node].physical_y_coord;
double dist = delx*delx + dely*dely;
if (dist < closest_dist)
{
closest_dist = dist;
*closest_node = node;
*closest_node_level = level;
}
return closest_dist;
}
closest_dist =
findClosestActiveNode(hierarchy, hierarchy->cv2v[level][2 * node],
level - 1, x, y, closest_dist, closest_node,
closest_node_level);
if (hierarchy->cv2v[level][2 * node + 1] >= 0) {
closest_dist =
findClosestActiveNode(hierarchy,
hierarchy->cv2v[level][2 * node + 1],
level - 1, x, y, closest_dist,
closest_node, closest_node_level);
}
return closest_dist;
}
/* find_leftmost_descendant:
* Given coarse node in given level, return representative node
* in lower level cur_level.
*/
static int
find_leftmost_descendant(Hierarchy * hierarchy, int node, int level,
int cur_level)
{
while (level > cur_level)
{
node = hierarchy->cv2v[level--][2 * node];
}
return node;
}
/* find_closest_active_node:
* Given x and y in physical coordinate system, determine closest
* actual node in graph. Store this in closest_fine_node, and return
* distance squared.
*/
double
find_closest_active_node(Hierarchy * hierarchy, double x, double y,
int *closest_fine_node)
{
int i, closest_node, closest_node_level;
int top_level = hierarchy->nlevels - 1;
double min_dist = 1e20;
for (i = 0; i < hierarchy->nvtxs[top_level]; i++)
{
min_dist = findClosestActiveNode(hierarchy, i, top_level, x, y,min_dist, &closest_node, &closest_node_level);
}
*closest_fine_node =find_leftmost_descendant(hierarchy, closest_node,closest_node_level, 0);
return min_dist;
}
int
init_ex_graph(v_data * graph1, v_data * graph2, int n,
double *x_coords, double *y_coords, ex_vtx_data ** gp)
{
// build ex_graph from the union of edges in 'graph1' and 'graph2'
// note that this function does not destroy the input graphs
ex_vtx_data *geom_graph;
int nedges1 = 0, nedges2 = 0;
int nedges = 0;
int i, j, k, l, first_nedges;
int neighbor;
for (i = 0; i < n; i++) {
nedges1 += graph1[i].nedges;
nedges2 += graph2[i].nedges;
}
int *edges = gv_calloc(nedges1 + nedges2, sizeof(int));
*gp = geom_graph = gv_calloc(n, sizeof(ex_vtx_data));
for (i = 0; i < n; i++) {
geom_graph[i].edges = edges;
geom_graph[i].size = 1;
geom_graph[i].x_coord = (float) x_coords[i];
geom_graph[i].y_coord = (float) y_coords[i];
geom_graph[i].edges[0] = i;
for (j = 1; j < graph1[i].nedges; j++) {
edges[j] = graph1[i].edges[j];
}
first_nedges = k = graph1[i].nedges;
for (j = 1; j < graph2[i].nedges; j++) {
neighbor = graph2[i].edges[j];
for (l = 1; l < first_nedges; l++) {
if (edges[l] == neighbor) { // already existed neighbor
break;
}
}
if (l == first_nedges) { // neighbor wasn't found
edges[k++] = neighbor;
}
}
geom_graph[i].nedges = k;
edges += k;
nedges += k;
}
nedges /= 2;
return nedges;
}
/* extract_active_logical_coords:
* Preorder scan the hierarchy tree, and extract the logical coordinates of
* all active nodes
* Store (universal) coords in x_coords and y_coords and increment index.
* Return index.
*/
size_t extract_active_logical_coords(Hierarchy *hierarchy, int node, int level,
double *x_coords, double *y_coords,
size_t counter) {
ex_vtx_data *graph = hierarchy->geom_graphs[level];
if (graph[node].active_level == level) { // node is active
x_coords[counter] = graph[node].x_coord;
y_coords[counter++] = graph[node].y_coord;
return counter;
}
counter =
extract_active_logical_coords(hierarchy,
hierarchy->cv2v[level][2 * node],
level - 1, x_coords, y_coords,
counter);
if (hierarchy->cv2v[level][2 * node + 1] >= 0) {
counter =
extract_active_logical_coords(hierarchy,
hierarchy->cv2v[level][2 * node +
1],
level - 1, x_coords, y_coords,
counter);
}
return counter;
}
/* set_active_physical_coords:
* Preorder scan the hierarchy tree, and set the physical coordinates
* of all active nodes
*/
int
set_active_physical_coords(Hierarchy * hierarchy, int node, int level,
double *x_coords, double *y_coords, int counter)
{
ex_vtx_data *graph = hierarchy->geom_graphs[level];
if (graph[node].active_level == level) { // node is active
graph[node].physical_x_coord = (float) x_coords[counter];
graph[node].physical_y_coord = (float) y_coords[counter++];
return counter;
}
counter =
set_active_physical_coords(hierarchy,
hierarchy->cv2v[level][2*node],
level - 1, x_coords, y_coords, counter);
if (hierarchy->cv2v[level][2 * node + 1] >= 0) {
counter =
set_active_physical_coords(hierarchy,
hierarchy->cv2v[level][2*node + 1],
level - 1, x_coords, y_coords,
counter);
}
return counter;
}
/* find_physical_coords:
* find the 'physical_coords' of the active-ancestor of 'node'
*/
void find_physical_coords(Hierarchy *hierarchy, int level, int node, float *x,
float *y) {
int active_level = hierarchy->geom_graphs[level][node].active_level;
while (active_level > level) {
node = hierarchy->v2cv[level][node];
level++;
}
*x = hierarchy->geom_graphs[level][node].physical_x_coord;
*y = hierarchy->geom_graphs[level][node].physical_y_coord;
}
void
find_active_ancestor_info(Hierarchy * hierarchy, int level, int node, int *levell,int *nodee)
{
int active_level = hierarchy->geom_graphs[level][node].active_level;
while (active_level > level) {
node = hierarchy->v2cv[level][node];
level++;
}
*nodee = node;
*levell = level;
}
/* find_old_physical_coords:
* find the 'old_physical_coords' of the old active-ancestor of 'node'
*/
void find_old_physical_coords(Hierarchy *hierarchy, int level, int node,
float *x, float *y) {
int active_level = hierarchy->geom_graphs[level][node].old_active_level;
while (active_level > level) {
node = hierarchy->v2cv[level][node];
level++;
}
*x = hierarchy->geom_graphs[level][node].old_physical_x_coord;
*y = hierarchy->geom_graphs[level][node].old_physical_y_coord;
}
/* find_active_ancestor:
* find the 'ancestorIndex' of the active-ancestor of 'node'
* Return negative if node's active_level < level.
*/
int
find_active_ancestor(Hierarchy * hierarchy, int level, int node)
{
int active_level = hierarchy->geom_graphs[level][node].active_level;
while (active_level > level) {
node = hierarchy->v2cv[level][node];
level++;
}
if (active_level == level)
return hierarchy->geom_graphs[level][node].globalIndex;
else
return -1;
}
void init_active_level(Hierarchy* hierarchy, int level)
{
int i,j;
ex_vtx_data* graph;
for (i=0; i<hierarchy->nlevels; i++) {
graph = hierarchy->geom_graphs[i];
for (j=0; j<hierarchy->nvtxs[i]; j++) {
graph->active_level = level;
graph++;
}
}
}
|