1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
/**
* @file
* @ingroup cgraph_utils
* @brief Dynamically expanding string buffers
*
* Incrementally constructing a string in C is not something easily available
* out-of-the-box. You either need to statically know the size of the string
* upfront or rely on non-standard APIs like `asprintf` and `open_memstream`.
*
* This header implements a self-contained, reasonably efficient alternative.
* You can think of this as similar to C++’s `std::ostringstream` or Python’s
* `io.StringIO`.
*
* `agxbuf` includes Short String Optimization (SSO), a technique to pack small
* strings into the bytes of the structure itself rather than an out-of-line
* heap buffer. The point of this is to save memory and/or runtime by avoiding
* allocator calls. In contrast to most other SSO implementations (e.g. those in
* the `std::string` implementations of many C++ standard libraries), `agxbuf`
* biases heavily towards saving memory over runtime performance. That is, the
* maximum length of string is eligible for SSO, at the expense of more runtime
* code branches. The thinking here (that should periodically be reconsidered)
* is that expensive Graphviz runs typically hit memory limits before runtime
* limits, and thus would benefit more from saving memory than running faster.
*/
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#pragma once
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <util/alloc.h>
#include <util/unused.h>
/// a description of where a buffer is located
typedef enum {
AGXBUF_INLINE_SIZE_0 = 0,
AGXBUF_ON_HEAP = 255, ///< buffer is dynamically allocated
/// other values mean an inline buffer with size N
} agxbuf_loc_t;
/// extensible buffer
///
/// Malloc'ed memory is never released until \p agxbdisown or \p agxbfree is
/// called.
///
/// This has the following layout assuming x86-64.
///
/// located
/// ↓
/// ┌───────────────┬───────────────┬───────────────┬─────────────┬─┐
/// │ buf │ size │ capacity │ padding │ │
/// ├───────────────┴───────────────┴───────────────┴─────────────┼─┤
/// │ store │ │
/// └─────────────────────────────────────────────────────────────┴─┘
/// 0 8 16 24 32
///
/// \p buf, \p size, and \p capacity are in use when \p located is
/// \p AGXBUF_ON_HEAP. \p store is in use when \p located is <
/// \p AGXBUF_ON_HEAP.
typedef struct {
union {
struct {
char *buf; ///< start of buffer
size_t size; ///< number of characters in the buffer
size_t capacity; ///< available bytes in the buffer
char padding[sizeof(size_t) - 1]; ///< unused; for alignment
unsigned char
located; ///< where does the backing memory for this buffer live?
};
char store[sizeof(char *) + sizeof(size_t) * 3 -
1]; ///< inline storage used when \p located is
///< < \p AGXBUF_ON_HEAP
};
} agxbuf;
static inline bool agxbuf_is_inline(const agxbuf *xb) {
assert((xb->located == AGXBUF_ON_HEAP || xb->located <= sizeof(xb->store)) &&
"corrupted agxbuf type");
return xb->located < AGXBUF_ON_HEAP;
}
/// free any malloced resources
static inline void agxbfree(agxbuf *xb) {
if (xb->located == AGXBUF_ON_HEAP)
free(xb->buf);
}
/// return pointer to beginning of buffer
static inline char *agxbstart(agxbuf *xb) {
return agxbuf_is_inline(xb) ? xb->store : xb->buf;
}
/// return number of characters currently stored
static inline size_t agxblen(const agxbuf *xb) {
if (agxbuf_is_inline(xb)) {
return xb->located - AGXBUF_INLINE_SIZE_0;
}
return xb->size;
}
/// get the capacity of the backing memory of a buffer
///
/// In contrast to \p agxblen, this is the total number of usable bytes in the
/// backing store, not the total number of currently stored bytes.
///
/// \param xb Buffer to operate on
/// \return Number of usable bytes in the backing store
static inline size_t agxbsizeof(const agxbuf *xb) {
if (agxbuf_is_inline(xb)) {
return sizeof(xb->store);
}
return xb->capacity;
}
/// removes last character added, if any
static inline int agxbpop(agxbuf *xb) {
size_t len = agxblen(xb);
if (len == 0) {
return -1;
}
if (agxbuf_is_inline(xb)) {
assert(xb->located > AGXBUF_INLINE_SIZE_0);
int c = xb->store[len - 1];
--xb->located;
return c;
}
int c = xb->buf[xb->size - 1];
--xb->size;
return c;
}
/// expand buffer to hold at least ssz more bytes
static inline void agxbmore(agxbuf *xb, size_t ssz) {
size_t cnt = 0; // current no. of characters in buffer
size_t size = 0; // current buffer size
size_t nsize = 0; // new buffer size
char *nbuf; // new buffer
size = agxbsizeof(xb);
nsize = size == 0 ? BUFSIZ : (2 * size);
if (size + ssz > nsize)
nsize = size + ssz;
cnt = agxblen(xb);
if (xb->located == AGXBUF_ON_HEAP) {
nbuf = (char *)gv_recalloc(xb->buf, size, nsize, sizeof(char));
} else {
nbuf = (char *)gv_calloc(nsize, sizeof(char));
memcpy(nbuf, xb->store, cnt);
xb->size = cnt;
}
xb->buf = nbuf;
xb->capacity = nsize;
xb->located = AGXBUF_ON_HEAP;
}
/// next position for writing
static inline char *agxbnext(agxbuf *xb) {
size_t len = agxblen(xb);
return agxbuf_is_inline(xb) ? &xb->store[len] : &xb->buf[len];
}
/// vprintf-style output to an agxbuf
static inline int vagxbprint(agxbuf *xb, const char *fmt, va_list ap) {
size_t size;
int result;
// determine how many bytes we need to print
{
va_list ap2;
int rc;
va_copy(ap2, ap);
rc = vsnprintf(NULL, 0, fmt, ap2);
va_end(ap2);
if (rc < 0) {
return rc;
}
size = (size_t)rc + 1; // account for NUL terminator
}
// should we use double buffering?
bool use_stage = false;
// do we need to expand the buffer?
{
size_t unused_space = agxbsizeof(xb) - agxblen(xb);
if (unused_space < size) {
size_t extra = size - unused_space;
if (agxbuf_is_inline(xb) && extra == 1) {
// The content is currently stored inline, but this print will push it
// over into being heap-allocated by a single byte. This last byte is a
// '\0' that `vsnprintf` unavoidably writes but we do not need. So lets
// avoid this by printing to an intermediate, larger buffer, and then
// copying the content minus the trailing '\0' to the final destination.
use_stage = true;
} else {
agxbmore(xb, extra);
}
}
}
// a buffer one byte larger than inline storage to fit the trailing '\0'
char stage[sizeof(xb->store) + 1] = {0};
assert(!use_stage || size <= sizeof(stage));
// we can now safely print into the buffer
char *dst = use_stage ? stage : agxbnext(xb);
result = vsnprintf(dst, size, fmt, ap);
assert(result == (int)(size - 1) || result < 0);
if (result > 0) {
if (agxbuf_is_inline(xb)) {
assert(result <= (int)UCHAR_MAX);
if (use_stage) {
memcpy(agxbnext(xb), stage, (size_t)result);
}
xb->located += (unsigned char)result;
assert(agxblen(xb) <= sizeof(xb->store) && "agxbuf corruption");
} else {
assert(!use_stage);
xb->size += (size_t)result;
}
}
return result;
}
/* support for extra API misuse warnings if available */
#ifdef __GNUC__
#define PRINTF_LIKE(index, first) __attribute__((format(printf, index, first)))
#else
#define PRINTF_LIKE(index, first) /* nothing */
#endif
/// Printf-style output to an agxbuf
static inline PRINTF_LIKE(2, 3) int agxbprint(agxbuf *xb, const char *fmt,
...) {
va_list ap;
int result;
va_start(ap, fmt);
result = vagxbprint(xb, fmt, ap);
va_end(ap);
return result;
}
#undef PRINTF_LIKE
/// append string s of length ssz into xb
static inline size_t agxbput_n(agxbuf *xb, const char *s, size_t ssz) {
if (ssz == 0) {
return 0;
}
if (ssz > agxbsizeof(xb) - agxblen(xb))
agxbmore(xb, ssz);
size_t len = agxblen(xb);
if (agxbuf_is_inline(xb)) {
memcpy(&xb->store[len], s, ssz);
assert(ssz <= UCHAR_MAX);
xb->located += (unsigned char)ssz;
assert(agxblen(xb) <= sizeof(xb->store) && "agxbuf corruption");
} else {
memcpy(&xb->buf[len], s, ssz);
xb->size += ssz;
}
return ssz;
}
/// append string s into xb
static inline size_t agxbput(agxbuf *xb, const char *s) {
size_t ssz = strlen(s);
return agxbput_n(xb, s, ssz);
}
/// add character to buffer
static inline int agxbputc(agxbuf *xb, char c) {
if (agxblen(xb) >= agxbsizeof(xb)) {
agxbmore(xb, 1);
}
size_t len = agxblen(xb);
if (agxbuf_is_inline(xb)) {
xb->store[len] = c;
++xb->located;
assert(agxblen(xb) <= sizeof(xb->store) && "agxbuf corruption");
} else {
xb->buf[len] = c;
++xb->size;
}
return 0;
}
/// resets pointer to data
static inline void agxbclear(agxbuf *xb) {
if (agxbuf_is_inline(xb)) {
xb->located = AGXBUF_INLINE_SIZE_0;
} else {
xb->size = 0;
}
}
/* Null-terminates buffer; resets and returns pointer to data. The buffer is
* still associated with the agxbuf and will be overwritten on the next, e.g.,
* agxbput. If you want to retrieve and disassociate the buffer, use agxbdisown
* instead.
*/
static inline WUR char *agxbuse(agxbuf *xb) {
if (!agxbuf_is_inline(xb) || agxblen(xb) != sizeof(xb->store)) {
(void)agxbputc(xb, '\0');
} else {
// we can skip explicitly null-terminating the buffer because `agxbclear`
// resets the `xb->located` byte such that it naturally forms a terminator
assert(AGXBUF_INLINE_SIZE_0 == '\0');
}
agxbclear(xb);
return agxbstart(xb);
}
/* Disassociate the backing buffer from this agxbuf and return it. The buffer is
* NUL terminated before being returned. If the agxbuf is using stack memory,
* this will first copy the data to a new heap buffer to then return. If you
* want to temporarily access the string in the buffer, but have it overwritten
* and reused the next time, e.g., agxbput is called, use agxbuse instead of
* agxbdisown.
*/
static inline char *agxbdisown(agxbuf *xb) {
char *buf;
if (agxbuf_is_inline(xb)) {
// the string lives in `store`, so we need to copy its contents to heap
// memory
buf = gv_strndup(xb->store, agxblen(xb));
} else {
// the buffer is already dynamically allocated, so terminate it and then
// take it as-is
agxbputc(xb, '\0');
buf = xb->buf;
}
// reset xb to a state where it is usable
memset(xb, 0, sizeof(*xb));
return buf;
}
/** trim extraneous trailing information from a printed floating point value
*
* tl;dr:
* - “42.00” → “42”
* - “42.01” → “42.01”
* - “42.10” → “42.1”
* - “-0.0” → “0”
*
* Printing a \p double or \p float via, for example,
* \p agxbprint("%.02f", 42.003) can result in output like “42.00”. If this data
* is destined for something that does generalized floating point
* parsing/decoding (e.g. SVG viewers) the “.00” is unnecessary. “42” would be
* interpreted identically. This function can be called after such a
* \p agxbprint to normalize data.
*
* \param xb Buffer to operate on
*/
static inline void agxbuf_trim_zeros(agxbuf *xb) {
// find last period
char *start = agxbstart(xb);
size_t period;
for (period = agxblen(xb) - 1;; --period) {
if (period == SIZE_MAX) {
// we searched the entire string and did not find a period
return;
}
if (start[period] == '.') {
break;
}
}
// truncate any “0”s that provide no information
for (size_t follower = agxblen(xb) - 1;; --follower) {
if (follower == period || start[follower] == '0') {
// truncate this character
if (agxbuf_is_inline(xb)) {
assert(xb->located > AGXBUF_INLINE_SIZE_0);
--xb->located;
} else {
--xb->size;
}
if (follower == period) {
break;
}
} else {
return;
}
}
// is the remainder we have left not “-0”?
const size_t len = agxblen(xb);
if (len < 2 || start[len - 2] != '-' || start[len - 1] != '0') {
return;
}
// turn “-0” into “0”
start[len - 2] = '0';
if (agxbuf_is_inline(xb)) {
assert(xb->located > AGXBUF_INLINE_SIZE_0);
--xb->located;
} else {
--xb->size;
}
}
|