1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/// @file
/// @brief type-generic dynamically expanding list
/// @ingroup cgraph_utils
///
/// The code in this header is structured as a public API made up of macros that
/// do as little as possible before handing off to internal functions.
///
/// If you are familiar with the concept of a dynamically expanding array like
/// C++’s `std::vector`, the only things that will likely throw you off are:
/// 1. The genericity of `LIST` is implemented through a `union` that overlaps
/// the `base` member of a `list_t_` (a generic list core) with a typed
/// pointer. This design involves the public macros dealing in the
/// `LIST(foo)` type while the private functions deal in `list_t_`s.
/// 2. The start of the list is not always index 0, in order to more
/// efficiently implement a queue. See the diagram and discussion in
/// `try_reserve` to better understand this.
///
/// Some general terminology you may see in function/macro names:
/// base – the start of the underlying heap allocation backing a list
/// dtor – destructor
/// head – slot index of the start of a list
/// item – a list element
/// slot – an item-sized space in the list, offset recorded from base
///
/// Some unorthodox idioms you may see used in this file:
/// • `(void)(foo == bar)` as a way to force the compiler to type-check that
/// `foo` and `bar` have compatible types. This is the best we can do for
/// pointer compatibility checks without `typeof`.
/// • `(void)(sizeof(foo) == sizeof(bar) ? (void)0 : (void)(…,abort())` as an
/// even weaker version of the above, for when we need to delay a check to
/// runtime instead of compile-time. This is a very unreliable check for
/// `foo` and `bar` being the same type, so should be avoided wherever
/// possible.
#pragma once
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <util/list-private.h>
#ifdef __cplusplus
extern "C" {
#endif
static_assert(
offsetof(list_t_, base) == 0,
"LIST(<type>).base and LIST(<type>).impl.base will not alias each other");
/// list data structure
///
/// Typical usage:
///
/// LIST(int) my_int_list = {0};
#define LIST(type) \
struct { \
union { \
type *base; \
list_t_ impl; \
}; /**< backing storage */ \
void (*dtor)(type); /**< optional destructor */ \
type scratch; /**< temporary space for storing off-list items */ \
}
/// sentinel value to indicate you want `free` to be used as a list destructor
///
/// Sample usage:
///
/// LIST(char *) my_strings = {.dtor = LIST_DTOR_FREE};
#define LIST_DTOR_FREE ((void *)1)
/// get the number of elements in a list
///
/// You can think of this macro as having the C type:
///
/// size_t LIST_SIZE(const LIST(<type>) *list);
///
/// @param list List to inspect
/// @return Size of the list
#define LIST_SIZE(list) gv_list_size_((list)->impl)
/// does this list contain no elements?
///
/// You can think of this macro as having the C type:
///
/// bool LIST_IS_EMPTY(const LIST(<type>) *list);
///
/// @param list List to inspect
/// @return True if the list is empty
#define LIST_IS_EMPTY(list) (LIST_SIZE(list) == 0)
/// try to append a new item to a list
///
/// You can think of this macro as having the C type:
///
/// bool LIST_TRY_APPEND(LIST(<type>) *list, <type> item);
///
/// @param list List to operate on
/// @param item Item to append
/// @return True if the append succeeded
#define LIST_TRY_APPEND(list, item) \
gv_list_try_append_(&(list)->impl, \
((list)->scratch = (item), &(list)->scratch), \
sizeof((list)->base[0]))
/// add an item to the end of a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_APPEND(LIST(<type>) *list, <type> item);
///
/// This macro succeeds or exits on out-of-memory; it never return failure.
///
/// Note, in contrast to `LIST_TRY_APPEND`, `gv_list_append_slot_` and the write
/// to `(list)->base[…]` are in separate statements because the
/// `gv_list_append_slot_` call here _can_ alter `(list)->base`.
///
/// @param list List to operate on
/// @param item Element to append
#define LIST_APPEND(list, item) \
do { \
(list)->scratch = (item); \
const size_t slot_ = \
gv_list_append_slot_(&(list)->impl, sizeof((list)->base[0])); \
(list)->base[slot_] = (list)->scratch; \
} while (0)
/// add an item to the beginning of a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_PREPEND(LIST(<type>) *list, <type> item);
///
/// This macro succeeds or exits on out-of-memory; it never return failure.
///
/// @param list List to operate on
/// @param item Element to prepend
#define LIST_PREPEND(list, item) \
do { \
(list)->scratch = (item); \
const size_t slot_ = \
gv_list_prepend_slot_(&(list)->impl, sizeof((list)->base[0])); \
(list)->base[slot_] = (list)->scratch; \
} while (0)
/// retrieve an item from a list
///
/// You can think of this macro as having the C type:
///
/// <type> LIST_GET(const LIST(<type>) *list, size_t index);
///
/// @param list List to operate on
/// @param index Item index to get
/// @return Item at the given index
#define LIST_GET(list, index) \
((list)->base[gv_list_get_((list)->impl, (index))])
/// retrieve a pointer to an item from a list
///
/// You can think of this macro as having one of the C types:
///
/// <type> *LIST_AT(LIST(<type>) *list, size_t index);
/// const <type> *LIST_AT(const LIST(<type>) *list, size_t index);
///
/// @param list List to operate on
/// @param index Item index to get
/// @return Pointer to item at the given index
#define LIST_AT(list, index) \
(&(list)->base[gv_list_get_((list)->impl, (index))])
/// retrieve a pointer to the first item in a list
///
/// You can think of this macro as having one of the C types:
///
/// <type> *LIST_FRONT(LIST(<type>) *list);
/// const <type> *LIST_FRONT(const LIST(<type>) *list);
///
/// @param list List to operate on
/// @return Pointer to the first item in the list
#define LIST_FRONT(list) LIST_AT((list), 0)
/// retrieve a pointer to the last item in a list
///
/// You can think of this macro as having one of the C types:
///
/// <type> *LIST_BACK(LIST(<type>) *list);
/// const <type> *LIST_BACK(const LIST(<type>) *list);
///
/// @param list List to operate on
/// @return Pointer to the last item in the list
#define LIST_BACK(list) LIST_AT((list), LIST_SIZE(list) - 1)
/// update the value of an item in a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_SET(LIST(<type>) *list, size_t index, <type> item);
///
/// @param list List to operate on
/// @param index Index of item to update
/// @param item New value to set
#define LIST_SET(list, index, item) \
do { \
(list)->scratch = (item); \
const size_t slot_ = gv_list_get_((list)->impl, (index)); \
LIST_DTOR_((list), slot_); \
(list)->base[slot_] = (list)->scratch; \
} while (0)
/// remove an item from a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_REMOVE(LIST(<type>) *list, <type> item);
///
/// @param list List to operate on
/// @param item Item to remove
#define LIST_REMOVE(list, item) \
do { \
/* get something we can take the address of */ \
(list)->scratch = (item); \
\
const size_t found_ = gv_list_find_((list)->impl, &(list)->scratch, \
sizeof((list)->base[0])); \
if (found_ == SIZE_MAX) { /* not found */ \
break; \
} \
\
LIST_DTOR_((list), found_); \
gv_list_remove_(&(list)->impl, found_, sizeof((list)->base[0])); \
} while (0)
/// remove all items from a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_CLEAR(LIST(<type>) *list);
///
/// @param list List to clear
#define LIST_CLEAR(list) \
do { \
for (size_t i_ = 0; i_ < LIST_SIZE(list); ++i_) { \
const size_t slot_ = gv_list_get_((list)->impl, i_); \
LIST_DTOR_((list), slot_); \
} \
gv_list_clear_(&(list)->impl, sizeof((list)->base[0])); \
} while (0)
/// reserve space for new items in a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_RESERVE(LIST(<type>) *list, size_t capacity);
///
/// @param list List to operate on
/// @param capacity Total number of item slots to make available
#define LIST_RESERVE(list, capacity) \
gv_list_reserve_(&(list)->impl, capacity, sizeof((list)->base[0]))
/// does a list contain a given item?
///
/// You can think of this macro as having the C type:
///
/// bool LIST_CONTAINS(const LIST(<type>) *list, <type> needle);
///
/// The `needle` parameter must be an expression that can have its address
/// taken. E.g. `LIST_CONTAINS(my_ints, 2)` is not valid. This can be worked
/// around with C99 compound literals, `LIST_CONTAINS(my_ints, (int){2})`.
///
/// @param list List to search
/// @param needle Item to search for
/// @return True if the item was found
#define LIST_CONTAINS(list, needle) \
gv_list_contains_((list)->impl, \
((void)((list)->base == &(needle)), &(needle)), \
sizeof((list)->base[0]))
/// copy a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_COPY(LIST(<type>) *dst, const LIST(<type>) *src);
///
/// @param [out] dst Copy of the source list on completion
/// @param src List to copy
#define LIST_COPY(dst, src) \
do { \
memset((dst), 0, sizeof(*(dst))); \
(void)((dst)->base == (src)->base); \
(dst)->impl = gv_list_copy_((src)->impl, sizeof((src)->base[0])); \
(dst)->dtor = (src)->dtor; \
} while (0)
/// does the list not wrap past its end?
///
/// This checks whether the list is discontiguous in how its elements
/// appear in memory:
///
/// ┌───┬───┬───┬───┬───┬───┬───┬───┐
/// a contiguous list: │ │ │ w │ x │ y │ z │ │ │
/// └───┴───┴───┴───┴───┴───┴───┴───┘
/// 0 1 2 3
///
/// ┌───┬───┬───┬───┬───┬───┬───┬───┐
/// a discontiguous list: │ y │ z │ │ │ │ │ w │ x │
/// └───┴───┴───┴───┴───┴───┴───┴───┘
/// 2 3 0 1
///
/// You can think of this macro as having the C type:
///
/// bool LIST_IS_CONTIGUOUS(const LIST(<type>>) *list);
///
/// @param list List to inspect
/// @return True if the list is contiguous
#define LIST_IS_CONTIGUOUS(list) gv_list_is_contiguous_((list)->impl);
/// shuffle the populated contents to reset `head` to 0
///
/// You can think of this macro as having the C type:
///
/// void LIST_SYNC(LIST(<type>) *list);
///
/// See the `LIST_IS_CONTIGUOUS` leading comment for a better understanding of
/// what it means for `head` to be non-zero.
///
/// @param list List to operate on
#define LIST_SYNC(list) gv_list_sync_(&(list)->impl, sizeof((list)->base[0]))
/// sort a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_SORT(LIST(<type>) *list,
/// int (*comparator)(const void *a, const void *b));
///
/// @param list List to operate on
/// @param comparator How to compare two list items
#define LIST_SORT(list, cmp) \
gv_list_sort_(&(list)->impl, (cmp), sizeof((list)->base[0]))
/// reverse the item order of a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_REVERSE(LIST(<type>) *list);
///
/// @param list List to operate on
#define LIST_REVERSE(list) \
gv_list_reverse_(&(list)->impl, sizeof((list)->base[0]))
/// decrease the allocated capacity of a list to minimum
///
/// You can think of this macro as having the C type:
///
/// void LIST_SHRINK_TO_FIT(LIST(<type>) *list);
///
/// @param list List to operate on
#define LIST_SHRINK_TO_FIT(list) \
gv_list_shrink_to_fit_(&(list)->impl, sizeof((list)->base[0]))
/// free resources associated with a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_FREE(LIST(<type>) *list);
///
/// After a call to this function, the list is empty and may be reused.
///
/// @param list List to free
#define LIST_FREE(list) \
do { \
LIST_CLEAR(list); \
gv_list_free_(&(list)->impl); \
} while (0)
/// alias for append
///
/// You can think of this macro as having the C type:
///
/// void LIST_PUSH_BACK(LIST(<type>) *list, <type> item);
///
/// @param list List to operate on
/// @param item Item to append
#define LIST_PUSH_BACK(list, item) LIST_APPEND((list), (item))
/// remove and return the first item of a list
///
/// You can think of this macro as having the C type:
///
/// <type> LIST_POP_FRONT(LIST(<type>) *list);
///
/// @param list List to operate on
/// @return Popped item
#define LIST_POP_FRONT(list) \
(gv_list_pop_front_(&(list)->impl, &(list)->scratch, \
sizeof((list)->base[0])), \
(list)->scratch)
/// remove and return the last item of a list
///
/// You can think of this macro as having the C type:
///
/// <type> LIST_POP_BACK(LIST(<type>) *list);
///
/// @param list List to operate on
/// @return Popped item
#define LIST_POP_BACK(list) \
(gv_list_pop_back_(&(list)->impl, &(list)->scratch, \
sizeof((list)->base[0])), \
(list)->scratch)
/// remove the last item of a list
///
/// You can think of this macro as having the C type:
///
/// void LIST_DROP_BACK(LIST(<type>) *list);
///
/// This can be used to pop the last element when the caller does not need the
/// popped item.
///
/// @param list List to operate on
#define LIST_DROP_BACK(list) \
do { \
const size_t slot_ = gv_list_get_((list)->impl, LIST_SIZE(list) - 1); \
LIST_DTOR_((list), slot_); \
gv_list_pop_back_(&(list)->impl, &(list)->scratch, \
sizeof((list)->base[0])); \
} while (0)
/// transform a managed list into a bare array
///
/// You can think of this macro as having the C type:
///
/// void LIST_DETACH(LIST(<type>) *list, <type> **data, size_t *size);
///
/// This can be useful when needing to pass data to a callee who does not
/// use this API. The managed list is emptied and left in a state where it
/// can be reused for other purposes.
///
/// @param list List to operate on
/// @param [out] datap The list data on completion
/// @param [out] sizep The list size on completion
#define LIST_DETACH(list, datap, sizep) \
gv_list_detach_(&(list)->impl, ((void)(&(list)->base == (datap)), (datap)), \
(sizep), sizeof((list)->base[0]))
#ifdef __cplusplus
}
#endif
|