1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
/// @file
/// @brief Implementation of random number generation functionality
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <util/alloc.h>
#include <util/gv_math.h>
#include <util/random.h>
int *gv_permutation(int bound) {
if (bound <= 0) {
return NULL;
}
// initialize a sequence `{0, 1, …, bound - 1}`
int *const p = gv_calloc((size_t)bound, sizeof(int));
for (int i = 0; i < bound; i++) {
p[i] = i;
}
// perform a Fisher-Yates shuffle
for (int i = bound - 1; i > 0; --i) {
const int j = gv_random(i + 1);
SWAP(&p[i], &p[j]);
}
return p;
}
/// handle random number generation, `bound ≤ RAND_MAX`
static int random_small(int bound) {
assert(bound > 0);
assert(bound <= RAND_MAX);
// The interval `[0, RAND_MAX]` is not necessarily neatly divided into
// `bound`-sized chunks. E.g. using a bound of 3 with a `RAND_MAX` of 7:
// ┌───┬───┬───┬───┬───┬───┬───┬───┐
// │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │
// └───┴───┴───┴───┴───┴───┴───┴───┘
// ◄─────────► ◄─────────► ◄─────►
// 3 values 3 values 2 values
// To guarantee a uniform distribution, derive the upper bound of the last
// complete chunk (5 in the example above), above which we discard and
// resample to avoid pulling from the partial trailing chunk.
const int discard_threshold =
RAND_MAX - (int)(((unsigned)RAND_MAX + 1) % (unsigned)bound);
int r;
do {
r = rand();
} while (r > discard_threshold);
return r % bound;
}
uint64_t gv_random_u64(uint64_t bound) {
assert(bound > 0);
// See comment in `random_small`, but note that our maximum generated value
// here will be `UINT64_MAX` instead of `RAND_MAX`. Note that we need to do a
// slightly different calculation to avoid the integer overflow that would
// otherwise result from `UINT64_MAX + 1`.
const uint64_t discard_threshold =
UINT64_MAX - (UINT64_MAX - bound + 1) % bound;
uint64_t r;
do {
// generate a random `uint64_t` value
r = 0;
for (size_t i = 0; i < sizeof(uint64_t); ++i) {
// `RAND_MAX ≥ 32767` is guaranteed, so `random_small(256)` is safe
const uint8_t byte = (uint8_t)random_small((int)UINT8_MAX + 1);
memcpy((char *)&r + i, &byte, sizeof(byte));
}
} while (r > discard_threshold);
return r % bound;
}
int gv_random(int bound) {
assert(bound > 0);
if (bound > RAND_MAX) {
_Static_assert(INT_MAX <= UINT64_MAX,
"the `int` type includes non-negative values that do not "
"fit in a `uint64_t`, hence some `int` values can never be "
"returned by `gv_random_u64`");
return (int)gv_random_u64((uint64_t)bound);
}
return random_small(bound);
}
|