File: block.cpp

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (426 lines) | stat: -rw-r--r-- 12,306 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/**
 * \brief A block is a group of variables that must be moved together to improve
 * the goal function without violating already active constraints.
 * The variables in a block are spanned by a tree of active constraints.
 *
 * Authors:
 *   Tim Dwyer <tgdwyer@gmail.com>
 *
 * Copyright (C) 2005 Authors
 *
 * This version is released under the CPL (Common Public License) with
 * the Graphviz distribution.
 * A version is also available under the LGPL as part of the Adaptagrams
 * project: https://github.com/mjwybrow/adaptagrams.  
 * If you make improvements or bug fixes to this code it would be much
 * appreciated if you could also contribute those changes back to the
 * Adaptagrams repository.
 */

#include <algorithm>
#include <cassert>
#include <ostream>
#include <vector>
#include <vpsc/constraint.h>
#include <vpsc/block.h>
#include <vpsc/blocks.h>
#include <fstream>
using std::ios;
using std::ofstream;
using std::vector;

#ifndef RECTANGLE_OVERLAP_LOGGING
	#define RECTANGLE_OVERLAP_LOGGING 0
#endif

/// `>` comparator for constraints
static bool gt(const Constraint *const lhs, const Constraint *const rhs) {
  return compareConstraints(rhs, lhs);
}

/// create a heap within a vector
///
/// The standard library’s heap functionality is all structured around creating
/// a max-heap but we want a min-heap. So we flip the comparator we give it.
static void make_heap(std::vector<Constraint *> &heap) {
  std::make_heap(heap.begin(), heap.end(), gt);
}

/// add all elements from `heap2` into the heap `heap1`
static void merge_heaps(std::vector<Constraint *> &heap1,
                  const std::vector<Constraint *> &heap2) {
  heap1.insert(heap1.end(), heap2.begin(), heap2.end());
  make_heap(heap1);
}

/// get the minimum heap element
static Constraint *findMin(std::vector<Constraint *> &heap) {
  assert(std::is_heap(heap.begin(), heap.end(), gt));
  return heap.front();
}

/// remove the minimum heap element
static void deleteMin(std::vector<Constraint *> &heap) {
  assert(std::is_heap(heap.begin(), heap.end(), gt));
  std::pop_heap(heap.begin(), heap.end(), gt);
  heap.pop_back();
}

/// add an item to a heap
static void insert(std::vector<Constraint *> &heap, Constraint *c) {
  assert(std::is_heap(heap.begin(), heap.end(), gt));
  heap.push_back(c);
  std::push_heap(heap.begin(), heap.end(), gt);
}

void Block::addVariable(Variable *v) {
	v->block=this;
	vars.push_back(v);
	weight+=v->weight;
	wposn += v->weight * (v->desiredPosition - v->offset);
	posn=wposn/weight;
}
Block::Block(Variable *v) {
	timeStamp=0;
	posn=weight=wposn=0;
	deleted=false;
	if(v!=nullptr) {
		v->offset=0;
		addVariable(v);
	}
}

double Block::desiredWeightedPosition() {
	double wp = 0;
	for (const Variable *v : vars) {
		wp += (v->desiredPosition - v->offset) * v->weight;
	}
	return wp;
}
void Block::setUpInConstraints() {
  in = setUpConstraintHeap(true);
}
void Block::setUpOutConstraints() {
  out = setUpConstraintHeap(false);
}

std::vector<Constraint *> Block::setUpConstraintHeap(bool use_in) {
	std::vector<Constraint *> h;
	for (Variable *v : vars) {
		vector<Constraint*> *cs= use_in ? &v->in : &v->out;
		for (Constraint *c : *cs) {
			c->timeStamp=blockTimeCtr;
			if ((c->left->block != this && use_in) || (c->right->block != this && !use_in)) {
				h.push_back(c);
			}
		}
	}
	make_heap(h);
	return h;
}	
void Block::merge(Block* b, Constraint* c) {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  merging on: "<<*c<<",c->left->offset="<<c->left->offset<<",c->right->offset="<<c->right->offset<<"\n";
	}
	const double dist = c->right->offset - c->left->offset - c->gap;
	Block *l=c->left->block;
	Block *r=c->right->block;
	if (vars.size() < b->vars.size()) {
		r->merge(l,c,dist);
	} else {
	       	l->merge(r,c,-dist);
	}
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  merged block="<<(b->deleted?*this:*b)<<"\n";
	}
}
/**
 * Merges b into this block across c.  Can be either a
 * right merge or a left merge
 * @param b block to merge into this
 * @param c constraint being merged
 * @param distance separation required to satisfy c
 */
void Block::merge(Block *b, Constraint *c, double dist) {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"    merging: "<<*b<<"dist="<<dist<<"\n";
	}
	c->active=true;
	wposn+=b->wposn-dist*b->weight;
	weight+=b->weight;
	posn=wposn/weight;
	for (Variable *v : b->vars) {
		v->block=this;
		v->offset+=dist;
		vars.push_back(v);
	}
	b->deleted=true;
}

void Block::mergeIn(Block *b) {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  merging constraint heaps... \n";
	}
	// We check the top of the heaps to remove possible internal constraints
	findMinInConstraint();
	b->findMinInConstraint();
	merge_heaps(in, b->in);
}
void Block::mergeOut(Block *b) {	
	findMinOutConstraint();
	b->findMinOutConstraint();
	merge_heaps(out, b->out);
}
Constraint *Block::findMinInConstraint() {
	Constraint *v = nullptr;
	vector<Constraint*> outOfDate;
	while (!in.empty()) {
		v = findMin(in);
		const Block *lb = v->left->block;
		const Block *rb = v->right->block;
		// rb may not be this if called between merge and mergeIn
		if (RECTANGLE_OVERLAP_LOGGING) {
			ofstream f(LOGFILE,ios::app);
			f<<"  checking constraint ... "<<*v;
			f<<"    timestamps: left="<<lb->timeStamp<<" right="<<rb->timeStamp<<" constraint="<<v->timeStamp<<"\n";
		}
		if(lb == rb) {
			// constraint has been merged into the same block
			if(RECTANGLE_OVERLAP_LOGGING && v->slack()<0) {
				ofstream f(LOGFILE,ios::app);
				f<<"  violated internal constraint found! "<<*v<<"\n";
				f<<"     lb="<<*lb<<"\n";
				f<<"     rb="<<*rb<<"\n";
			}
			deleteMin(in);
			if (RECTANGLE_OVERLAP_LOGGING) {
				ofstream f(LOGFILE,ios::app);
				f<<" ... skipping internal constraint\n";
			}
		} else if(v->timeStamp < lb->timeStamp) {
			// block at other end of constraint has been moved since this
			deleteMin(in);
			outOfDate.push_back(v);
			if (RECTANGLE_OVERLAP_LOGGING) {
				ofstream f(LOGFILE,ios::app);
				f<<"    reinserting out of date (reinsert later)\n";
			}
		} else {
			break;
		}
	}
	for (Constraint *c : outOfDate) {
		c->timeStamp=blockTimeCtr;
		insert(in, c);
	}
	if(in.empty()) {
		v=nullptr;
	} else {
		v = findMin(in);
	}
	return v;
}
Constraint *Block::findMinOutConstraint() {
	if(out.empty()) return nullptr;
	Constraint *v = findMin(out);
	while (v->left->block == v->right->block) {
		deleteMin(out);
		if(out.empty()) return nullptr;
		v = findMin(out);
	}
	return v;
}
void Block::deleteMinInConstraint() {
	deleteMin(in);
}
void Block::deleteMinOutConstraint() {
	deleteMin(out);
}
inline bool Block::canFollowLeft(const Constraint *c, const Variable *last) {
	return c->left->block==this && c->active && last!=c->left;
}
inline bool Block::canFollowRight(const Constraint *c, const Variable *last) {
	return c->right->block==this && c->active && last!=c->right;
}

// computes the derivative of v and the lagrange multipliers
// of v's out constraints (as the recursive sum of those below.
// Does not backtrack over u.
// also records the constraint with minimum lagrange multiplier
// in min_lm
double Block::compute_dfdv(Variable *v, Variable *u, Constraint *&min_lm) {
	double dfdv=v->weight*(v->position() - v->desiredPosition);
	for (Constraint *c : v->out) {
		if(canFollowRight(c,u)) {
			dfdv+=c->lm=compute_dfdv(c->right,v,min_lm);
			if(min_lm==nullptr||c->lm<min_lm->lm) min_lm=c;
		}
	}
	for (Constraint *c : v->in) {
		if(canFollowLeft(c,u)) {
			dfdv-=c->lm=-compute_dfdv(c->left,v,min_lm);
			if(min_lm==nullptr||c->lm<min_lm->lm) min_lm=c;
		}
	}
	return dfdv;
}


// computes dfdv for each variable and uses the sum of dfdv on either side of
// the constraint c to compute the lagrangian multiplier lm_c.
// The top level v and r are variables between which we want to find the
// constraint with the smallest lm.  
// When we find r we pass nullptr to subsequent recursive calls, 
// thus r=nullptr indicates constraints are not on the shortest path.
// Similarly, m is initially nullptr and is only assigned a value if the next
// variable to be visited is r or if a possible min constraint is returned from
// a nested call (rather than nullptr).
// Then, the search for the m with minimum lm occurs as we return from
// the recursion (checking only constraints traversed left-to-right 
// in order to avoid creating any new violations).
Block::Pair Block::compute_dfdv_between(Variable* r, Variable* v, Variable* u, 
		Direction dir = NONE, bool changedDirection = false) {
	double dfdv=v->weight*(v->position() - v->desiredPosition);
	Constraint *m=nullptr;
	for (Constraint *c : v->in) {
		if(canFollowLeft(c,u)) {
			if(dir==RIGHT) { 
				changedDirection = true; 
			}
			if(c->left==r) {
			       	r=nullptr; m=c; 
			}
			Pair p=compute_dfdv_between(r,c->left,v,
					LEFT,changedDirection);
			dfdv -= c->lm = -p.first;
			if(r && p.second) 
				m = p.second;
		}
	}
	for (Constraint *c : v->out) {
		if(canFollowRight(c,u)) {
			if(dir==LEFT) { 
				changedDirection = true; 
			}
			if(c->right==r) {
			       	r=nullptr; m=c; 
			}
			Pair p=compute_dfdv_between(r,c->right,v,
					RIGHT,changedDirection);
			dfdv += c->lm = p.first;
			if(r && p.second) 
				m = changedDirection && c->lm < p.second->lm 
					? c 
					: p.second;
		}
	}
	return Pair(dfdv,m);
}

// resets LMs for all active constraints to 0 by
// traversing active constraint tree starting from v,
// not back tracking over u
void Block::reset_active_lm(Variable *v, Variable *u) {
	for (Constraint *c : v->out) {
		if(canFollowRight(c,u)) {
			c->lm=0;
			reset_active_lm(c->right,v);
		}
	}
	for (Constraint *c : v->in) {
		if(canFollowLeft(c,u)) {
			c->lm=0;
			reset_active_lm(c->left,v);
		}
	}
}
/**
 * finds the constraint with the minimum lagrange multiplier, that is, the constraint
 * that most wants to split
 */
Constraint *Block::findMinLM() {
	Constraint *min_lm=nullptr;
	reset_active_lm(vars.front(),nullptr);
	compute_dfdv(vars.front(),nullptr,min_lm);
	return min_lm;
}
Constraint *Block::findMinLMBetween(Variable* lv, Variable* rv) {
	Constraint *min_lm=nullptr;
	reset_active_lm(vars.front(),nullptr);
	min_lm=compute_dfdv_between(rv,lv,nullptr).second;
	return min_lm;
}

// populates block b by traversing the active constraint tree adding variables as they're 
// visited.  Starts from variable v and does not backtrack over variable u.
void Block::populateSplitBlock(Block *b, Variable *v, Variable *u) {
	b->addVariable(v);
	for (Constraint *c : v->in) {
		if (canFollowLeft(c,u))
			populateSplitBlock(b, c->left, v);
	}
	for (Constraint *c : v->out) {
		if (canFollowRight(c,u))
			populateSplitBlock(b, c->right, v);
	}
}
/**
 * Block needs to be split because of a violated constraint between vl and vr.
 * We need to search the active constraint tree between l and r and find the constraint
 * with min lagrangrian multiplier and split at that point.
 * Returns the split constraint
 */
Constraint* Block::splitBetween(Variable* vl, Variable* vr, Block* &lb, Block* &rb) {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  need to split between: "<<*vl<<" and "<<*vr<<"\n";
	}
	Constraint *c=findMinLMBetween(vl, vr);
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  going to split on: "<<*c<<"\n";
	}
	split(lb,rb,c);
	deleted = true;
	return c;
}
/**
 * Creates two new blocks, l and r, and splits this block across constraint c,
 * placing the left subtree of constraints (and associated variables) into l
 * and the right into r.
 */
void Block::split(Block* &l, Block* &r, Constraint* c) {
	c->active=false;
	l=new Block();
	populateSplitBlock(l,c->left,c->right);
	r=new Block();
	populateSplitBlock(r,c->right,c->left);
}

/**
 * Computes the cost (squared euclidean distance from desired positions) of the
 * current positions for variables in this block
 */
double Block::cost() {
	double c = 0;
	for (const Variable *v : vars) {
		const double diff = v->position() - v->desiredPosition;
		c += v->weight * diff * diff;
	}
	return c;
}

std::ostream& operator <<(std::ostream &os, const Block &b) {
	os<<"Block:";
	for(const Variable *v : b.vars) {
		os<<" "<<*v;
	}
	if(b.deleted) {
		os<<" Deleted!";
	}
    return os;
}