1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/**
* \brief A block structure defined over the variables
*
* A block structure defined over the variables such that each block contains
* 1 or more variables, with the invariant that all constraints inside a block
* are satisfied by keeping the variables fixed relative to one another
*
* Authors:
* Tim Dwyer <tgdwyer@gmail.com>
*
* Copyright (C) 2005 Authors
*
* This version is released under the CPL (Common Public License) with
* the Graphviz distribution.
* A version is also available under the LGPL as part of the Adaptagrams
* project: https://github.com/mjwybrow/adaptagrams.
* If you make improvements or bug fixes to this code it would be much
* appreciated if you could also contribute those changes back to the
* Adaptagrams repository.
*/
#include <vpsc/blocks.h>
#include <vpsc/block.h>
#include <vpsc/constraint.h>
#include <fstream>
using std::ios;
using std::ofstream;
using std::set;
using std::list;
#ifndef RECTANGLE_OVERLAP_LOGGING
#define RECTANGLE_OVERLAP_LOGGING 0
#endif
long blockTimeCtr;
Blocks::Blocks(const int n, Variable *vs_[]) : vs(vs_), nvs(n) {
blockTimeCtr=0;
for(int i=0;i<nvs;i++) {
insert(new Block(vs[i]));
}
}
Blocks::~Blocks()
{
blockTimeCtr=0;
for (Block *b : *this) {
delete b;
}
}
/**
* returns a list of variables with total ordering determined by the constraint
* DAG
*/
list<Variable*> Blocks::totalOrder() {
list<Variable*> order;
for(int i=0;i<nvs;i++) {
vs[i]->visited=false;
}
for(int i=0;i<nvs;i++) {
if(vs[i]->in.empty()) {
dfsVisit(vs[i],order);
}
}
return order;
}
// Recursive depth first search giving total order by pushing nodes in the DAG
// onto the front of the list when we finish searching them
void Blocks::dfsVisit(Variable *v, list<Variable*> &order) {
v->visited=true;
for (Constraint *c : v->out) {
if(!c->right->visited) {
dfsVisit(c->right, order);
}
}
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<" order="<<*v<<"\n";
}
order.push_front(v);
}
/**
* Processes incoming constraints, most violated to least, merging with the
* neighbouring (left) block until no more violated constraints are found
*/
void Blocks::mergeLeft(Block *r) {
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<"mergeLeft called on "<<*r<<"\n";
}
r->timeStamp=++blockTimeCtr;
r->setUpInConstraints();
Constraint *c=r->findMinInConstraint();
while (c != nullptr && c->slack()<0) {
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<"mergeLeft on constraint: "<<*c<<"\n";
}
r->deleteMinInConstraint();
Block *l = c->left->block;
if (l->in.empty()) l->setUpInConstraints();
double dist = c->right->offset - c->left->offset - c->gap;
if (r->vars.size() < l->vars.size()) {
dist=-dist;
std::swap(l, r);
}
blockTimeCtr++;
r->merge(l, c, dist);
r->mergeIn(l);
r->timeStamp=blockTimeCtr;
removeBlock(l);
c=r->findMinInConstraint();
}
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<"merged "<<*r<<"\n";
}
}
/**
* Symmetrical to mergeLeft
*/
void Blocks::mergeRight(Block *l) {
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<"mergeRight called on "<<*l<<"\n";
}
l->setUpOutConstraints();
Constraint *c = l->findMinOutConstraint();
while (c != nullptr && c->slack()<0) {
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<"mergeRight on constraint: "<<*c<<"\n";
}
l->deleteMinOutConstraint();
Block *r = c->right->block;
r->setUpOutConstraints();
double dist = c->left->offset + c->gap - c->right->offset;
if (l->vars.size() > r->vars.size()) {
dist=-dist;
std::swap(l, r);
}
l->merge(r, c, dist);
l->mergeOut(r);
removeBlock(r);
c=l->findMinOutConstraint();
}
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<"merged "<<*l<<"\n";
}
}
void Blocks::removeBlock(Block *doomed) {
doomed->deleted=true;
//erase(doomed);
}
void Blocks::cleanup() {
for (auto i = begin(); i != end();) {
Block *b=*i;
if(b->deleted) {
i = erase(i);
delete b;
} else {
++i;
}
}
}
/**
* Splits block b across constraint c into two new blocks, l and r (c's left
* and right sides respectively)
*/
void Blocks::split(Block *b, Block *&l, Block *&r, Constraint *c) {
b->split(l,r,c);
if (RECTANGLE_OVERLAP_LOGGING) {
ofstream f(LOGFILE,ios::app);
f<<"Split left: "<<*l<<"\n";
f<<"Split right: "<<*r<<"\n";
}
r->posn = b->posn;
r->wposn = r->posn * r->weight;
mergeLeft(l);
// r may have been merged!
r = c->right->block;
r->wposn = r->desiredWeightedPosition();
r->posn = r->wposn / r->weight;
mergeRight(r);
removeBlock(b);
insert(l);
insert(r);
}
/**
* returns the cost total squared distance of variables from their desired
* positions
*/
double Blocks::cost() {
double c = 0;
for (Block *b : *this) {
c += b->cost();
}
return c;
}
|