File: solve_VPSC.cpp

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: forky
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (412 lines) | stat: -rw-r--r-- 10,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/**
 * \file
 * \brief Solve an instance of the "Variable Placement with Separation
 * Constraints" problem.
 *
 * Authors:
 *   Tim Dwyer <tgdwyer@gmail.com>
 *
 * Copyright (C) 2005 Authors
 * 
 * This version is released under the CPL (Common Public License) with
 * the Graphviz distribution.
 * A version is also available under the LGPL as part of the Adaptagrams
 * project: https://github.com/mjwybrow/adaptagrams.  
 * If you make improvements or bug fixes to this code it would be much
 * appreciated if you could also contribute those changes back to the
 * Adaptagrams repository.
 */

#include <cassert>
#include <vpsc/constraint.h>
#include <vpsc/block.h>
#include <vpsc/blocks.h>
#include <vpsc/solve_VPSC.h>
#include <math.h>
#include <memory>
#include <sstream>
#include <fstream>
#include <stdexcept>
using std::ios;
using std::ofstream;

using std::ostringstream;
using std::list;
using std::set;

#ifndef RECTANGLE_OVERLAP_LOGGING
	#define RECTANGLE_OVERLAP_LOGGING 0
#endif

IncVPSC::IncVPSC(const unsigned n, Variable *vs[], const unsigned m_,
                 Constraint *cs_[])
    : VPSC(n, vs, m_, cs_) {
	inactive.assign(cs_, cs_ + m_);
	for(Constraint *c : inactive) {
		c->active=false;
	}
}

VPSC::VPSC(const unsigned n, Variable *vs[], const unsigned m_,
           Constraint *cs_[])
  : bs(n, vs), cs(cs_), m(m_) {
	if (RECTANGLE_OVERLAP_LOGGING) {
		printBlocks();
		assert(!constraintGraphIsCyclic(n,vs));
	}
}

// useful in debugging
void VPSC::printBlocks() {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		for(Block *b : bs) {
			f<<"  "<<*b<<"\n";
		}
		for(unsigned i=0;i<m;i++) {
			f<<"  "<<*cs[i]<<"\n";
		}
	}
}
/**
* Produces a feasible - though not necessarily optimal - solution by
* examining blocks in the partial order defined by the directed acyclic
* graph of constraints. For each block (when processing left to right) we
* maintain the invariant that all constraints to the left of the block
* (incoming constraints) are satisfied. This is done by repeatedly merging
* blocks into bigger blocks across violated constraints (most violated
* first) fixing the position of variables inside blocks relative to one
* another so that constraints internal to the block are satisfied.
*/
void VPSC::satisfy() {
	list<Variable*> vs=bs.totalOrder();
	for(Variable *v : vs) {
		if(!v->block->deleted) {
			bs.mergeLeft(v->block);
		}
	}
	bs.cleanup();
	for(unsigned i=0;i<m;i++) {
		if(cs[i]->slack()<-0.0000001) {
			if (RECTANGLE_OVERLAP_LOGGING) {
				ofstream f(LOGFILE,ios::app);
				f<<"Error: Unsatisfied constraint: "<<*cs[i]<<"\n";
			}
			//assert(cs[i]->slack()>-0.0000001);
			throw std::runtime_error("Unsatisfied constraint");
		}
	}
}

void VPSC::refine() {
	for (bool solved = false; !solved;) {
		solved=true;
		for(Block *b : bs) {
			b->setUpInConstraints();
			b->setUpOutConstraints();
		}
		for(Block *b : bs) {
			Constraint *c=b->findMinLM();
			if(c!=nullptr && c->lm<0) {
				if (RECTANGLE_OVERLAP_LOGGING) {
					ofstream f(LOGFILE,ios::app);
					f<<"Split on constraint: "<<*c<<"\n";
				}
				// Split on c
				Block *l=nullptr, *r=nullptr;
				bs.split(b,l,r,c);
				bs.cleanup();
				// split alters the block set so we have to restart
				solved=false;
				break;
			}
		}
	}
	for(unsigned i=0;i<m;i++) {
		if(cs[i]->slack()<-0.0000001) {
			assert(cs[i]->slack()>-0.0000001);
			throw std::runtime_error("Unsatisfied constraint");
		}
	}
}
/**
 * Calculate the optimal solution. After using satisfy() to produce a
 * feasible solution, refine() examines each block to see if further
 * refinement is possible by splitting the block. This is done repeatedly
 * until no further improvement is possible.
 */
void VPSC::solve() {
	satisfy();
	refine();
}

void IncVPSC::solve() {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"solve_inc()...\n";
	}
	double lastcost,cost = bs.cost();
	do {
		lastcost=cost;
		satisfy();
		splitBlocks();
		cost = bs.cost();
		if (RECTANGLE_OVERLAP_LOGGING) {
			ofstream f(LOGFILE,ios::app);
			f<<"  cost="<<cost<<"\n";
		}
	} while(fabs(lastcost-cost)>0.0001);
}
/**
 * incremental version of satisfy that allows refinement after blocks are
 * moved.
 *
 *  - move blocks to new positions
 *  - repeatedly merge across most violated constraint until no more
 *    violated constraints exist
 *
 * Note: there is a special case to handle when the most violated constraint
 * is between two variables in the same block.  Then, we must split the block
 * over an active constraint between the two variables.  We choose the 
 * constraint with the most negative lagrangian multiplier. 
 */
void IncVPSC::satisfy() {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"satisfy_inc()...\n";
	}
	splitBlocks();
	long splitCtr = 0;
	Constraint* v = nullptr;
	while(mostViolated(inactive,v)<-0.0000001) {
		assert(!v->active);
		Block *lb = v->left->block, *rb = v->right->block;
		if(lb != rb) {
			lb->merge(rb,v);
		} else {
			if(splitCtr++>10000) {
				throw std::runtime_error("Cycle Error!");
			}
			// constraint is within block, need to split first
			inactive.push_back(lb->splitBetween(v->left,v->right,lb,rb));
			lb->merge(rb,v);
			bs.insert(lb);
		}
	}
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  finished merges.\n";
	}
	bs.cleanup();
	for(unsigned i=0;i<m;i++) {
		v=cs[i];
		if(v->slack()<-0.0000001) {
			//assert(cs[i]->slack()>-0.0000001);
			ostringstream s;
			s<<"Unsatisfied constraint: "<<*v;
			throw std::runtime_error(s.str());
		}
	}
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  finished cleanup.\n";
		printBlocks();
	}
}
void IncVPSC::moveBlocks() {
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"moveBlocks()...\n";
	}
	for(Block *b : bs) {
		b->wposn = b->desiredWeightedPosition();
		b->posn = b->wposn / b->weight;
	}
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  moved blocks.\n";
	}
}
void IncVPSC::splitBlocks() {
	moveBlocks();
	splitCnt=0;
	// Split each block if necessary on min LM
	for(Block *b : bs) {
		Constraint* v=b->findMinLM();
		if(v!=nullptr && v->lm < -0.0000001) {
			if (RECTANGLE_OVERLAP_LOGGING) {
				ofstream f(LOGFILE,ios::app);
				f<<"    found split point: "<<*v<<" lm="<<v->lm<<"\n";
			}
			splitCnt++;
			Block *b2 = v->left->block, *l=nullptr, *r=nullptr;
			assert(v->left->block == v->right->block);
			double pos = b2->posn;
			b2->split(l,r,v);
			l->posn=r->posn=pos;
			l->wposn = l->posn * l->weight;
			r->wposn = r->posn * r->weight;
			bs.insert(l);
			bs.insert(r);
			b2->deleted=true;
			inactive.push_back(v);
			if (RECTANGLE_OVERLAP_LOGGING) {
				ofstream f(LOGFILE,ios::app);
				f<<"  new blocks: "<<*l<<" and "<<*r<<"\n";
			}
		}
	}
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  finished splits.\n";
	}
	bs.cleanup();
}

/**
 * Scan constraint list for the most violated constraint, or the first equality
 * constraint
 */
double IncVPSC::mostViolated(ConstraintList &l, Constraint* &v) {
	double minSlack = DBL_MAX;
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"Looking for most violated...\n";
	}
	ConstraintList::iterator end = l.end();
	ConstraintList::iterator deletePoint = end;
	for(ConstraintList::iterator i=l.begin();i!=end;i++) {
		Constraint *c=*i;
		double slack = c->slack();
		if (slack < minSlack) {
			minSlack=slack;	
			v=c;
			deletePoint=i;
		}
	}
	// Because the constraint list is not order dependent we just
	// move the last element over the deletePoint and resize
	// downwards.  There is always at least 1 element in the
	// vector because of search.
	if(deletePoint != end && minSlack<-0.0000001) {
		*deletePoint = l[l.size()-1];
		l.resize(l.size()-1);
	}
	if (RECTANGLE_OVERLAP_LOGGING) {
		ofstream f(LOGFILE,ios::app);
		f<<"  most violated is: "<<*v<<"\n";
	}
	return minSlack;
}

#include <map>
using std::map;
using std::vector;
struct node {
	set<node*> in;
	set<node*> out;
};
// useful in debugging - cycles would be BAD
bool VPSC::constraintGraphIsCyclic(const unsigned n, Variable *vs[]) {
	map<Variable*, node*> varmap;
	vector<std::unique_ptr<node>> graph;
	for(unsigned i=0;i<n;i++) {
		graph.emplace_back(new node);
		varmap[vs[i]]=graph.back().get();
	}
	for(unsigned i=0;i<n;i++) {
		for(Constraint *c : vs[i]->in) {
			Variable *l=c->left;
			varmap[vs[i]]->in.insert(varmap[l]);
		}

		for(Constraint *c : vs[i]->out) {
			Variable *r=c->right;
			varmap[vs[i]]->out.insert(varmap[r]);
		}
	}
	while(!graph.empty()) {
		node *u=nullptr;
		vector<std::unique_ptr<node>>::iterator i=graph.begin();
		for(;i!=graph.end();i++) {
			u=(*i).get();
			if(u->in.empty()) {
				break;
			}
		}
		if(i==graph.end()) {
			//cycle found!
			return true;
		} else {
			graph.erase(i);
			for(node *v : u->out) {
				v->in.erase(u);
			}
		}
	}
	return false;
}

// useful in debugging - cycles would be BAD
bool VPSC::blockGraphIsCyclic() {
	map<Block*, node*> bmap;
	vector<std::unique_ptr<node>> graph;
	for(Block *b : bs) {
		graph.emplace_back(new node);
		bmap[b]=graph.back().get();
	}
	for(Block *b : bs) {
		b->setUpInConstraints();
		Constraint *c=b->findMinInConstraint();
		while(c!=nullptr) {
			Block *l=c->left->block;
			bmap[b]->in.insert(bmap[l]);
			b->deleteMinInConstraint();
			c=b->findMinInConstraint();
		}

		b->setUpOutConstraints();
		c=b->findMinOutConstraint();
		while(c!=nullptr) {
			Block *r=c->right->block;
			bmap[b]->out.insert(bmap[r]);
			b->deleteMinOutConstraint();
			c=b->findMinOutConstraint();
		}
	}
	while(!graph.empty()) {
		node *u=nullptr;
		vector<std::unique_ptr<node>>::iterator i=graph.begin();
		for(;i!=graph.end();i++) {
			u=(*i).get();
			if(u->in.empty()) {
				break;
			}
		}
		if(i==graph.end()) {
			//cycle found!
			return true;
		}
		graph.erase(i);
		for(node *v : u->out) {
			v->in.erase(u);
		}
	}
	return false;
}
/**
 * @dir lib/vpsc
 * @brief library for solving the
 *        %Variable Placement with Separation Constraints problem
 *        for lib/neatogen
 *
 * This is a quadratic programming problem in which the squared differences
 * between a placement vector and some ideal placement are minimized subject
 * to a set of separation constraints. This is very useful in a number of layout problems.
 *
 * References:
 * - https://www.adaptagrams.org/documentation/libvpsc.html
 * - Tim Dwyer, Kim Marriott, and Peter J. Stuckey. Fast node overlap removal.
 *   In Proceedings 13th International Symposium on Graph Drawing (GD '05),
 *   volume 3843 of LNCS, pages 153-164. Springer, 2006.
 */