1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#include <math.h>
#include "simple.h"
#include <stdlib.h>
#include <util/unreachable.h>
static int sign(double v) {
if (v < 0)
return -1;
if (v > 0)
return 1;
return 0;
}
/* find the sign of the area of each of the triangles
formed by adding a vertex of m to l
also find the sign of their product */
static void sgnarea(struct vertex *l, struct vertex *m, int i[])
{
const double a = l->pos.x;
const double b = l->pos.y;
const double c = after(l)->pos.x - a;
const double d = after(l)->pos.y - b;
const double e = m->pos.x - a;
const double f = m->pos.y - b;
const double g = after(m)->pos.x - a;
const double h = after(m)->pos.y - b;
double t = c * f - d * e;
i[0] = sign(t);
t = c * h - d * g;
i[1] = sign(t);
i[2] = i[0] * i[1];
}
/** where is `g` relative to the interval delimited by `f` and `h`?
*
* The order of `f` and `h` is not assumed. That is, the interval defined may be
* `(f, h)` or `(h, f)` depending on whether `f` is less than or greater than
* `h`.
*
* \param f First boundary of the interval
* \param g Value to test
* \param h Second boundary of the interval
* \return -1 if g is not in the interval, 1 if g is in the interval, 0 if g is
* on the boundary (that is, equal to f or equal to h)
*/
static int between(double f, double g, double h) {
if (f < g) {
if (g < h) {
return 1;
}
if (g > h) {
return -1;
}
return 0;
}
if (f > g) {
if (g > h) {
return 1;
}
if (g < h) {
return -1;
}
return 0;
}
return 0;
}
/* determine if vertex i of line m is on line l */
static int online(struct vertex *l, struct vertex *m, int i)
{
struct position a, b, c;
a = l->pos;
b = after(l)->pos;
c = i == 0 ? m->pos : after(m)->pos;
return a.x == b.x ? (a.x == c.x && -1 != between(a.y, c.y, b.y))
: between(a.x, c.x, b.x);
}
/* determine point of detected intersections */
static int intpoint(struct vertex *l, struct vertex *m, double *x, double *y,
int cond) {
struct position ls, le, ms, me, pt1, pt2;
if (cond <= 0)
return (0);
ls = l->pos;
le = after(l)->pos;
ms = m->pos;
me = after(m)->pos;
switch (cond) {
case 3: /* a simple intersection */
if (ls.x == le.x) {
*x = ls.x;
*y = me.y + SLOPE(ms, me) * (*x - me.x);
} else if (ms.x == me.x) {
*x = ms.x;
*y = le.y + SLOPE(ls, le) * (*x - le.x);
} else {
const double m1 = SLOPE(ms, me);
const double m2 = SLOPE(ls, le);
const double c1 = ms.y - m1 * ms.x;
const double c2 = ls.y - m2 * ls.x;
*x = (c2 - c1) / (m1 - m2);
*y = (m1 * c2 - c1 * m2) / (m1 - m2);
}
break;
case 2: /* the two lines have a common segment */
if (online(l, m, 0) == -1) { /* ms between ls and le */
pt1 = ms;
pt2 = online(m, l, 1) == -1 ? (online(m, l, 0 == -1) ? le : ls) : me;
} else if (online(l, m, 1) == -1) { /* me between ls and le */
pt1 = me;
pt2 = online(l, m, 0) == -1 ? (online(m, l, 0) == -1 ? le : ls) : ms;
} else {
/* may be degenerate? */
if (online(m, l, 0) != -1)
return 0;
pt1 = ls;
pt2 = le;
}
*x = (pt1.x + pt2.x) / 2;
*y = (pt1.y + pt2.y) / 2;
break;
case 1: /* a vertex of line m is on line l */
if ((ls.x - le.x) * (ms.y - ls.y) == (ls.y - le.y) * (ms.x - ls.x)) {
*x = ms.x;
*y = ms.y;
} else {
*x = me.x;
*y = me.y;
}
break;
default:
UNREACHABLE();
} /* end switch */
return 1;
}
void find_intersection(struct vertex *l, struct vertex *m,
intersections_t *ilist) {
double x, y;
int i[3];
sgnarea(l, m, i);
if (i[2] > 0)
return;
if (i[2] < 0) {
sgnarea(m, l, i);
if (i[2] > 0)
return;
if (!intpoint(l, m, &x, &y, i[2] < 0 ? 3 : online(m, l, abs(i[0]))))
return;
}
else if (!intpoint(l, m, &x, &y, i[0] == i[1] ? 2 * MAX(online(l, m, 0),
online(l, m, 1)) : online(l, m, abs(i[0]))))
return;
struct intersection inter = {
.firstv = l,
.secondv = m,
.firstp = l->poly,
.secondp = m->poly,
.x = x,
.y = y
};
LIST_APPEND(ilist, inter);
}
|