File: intersect.c

package info (click to toggle)
graphviz 14.0.5-2
  • links: PTS
  • area: main
  • in suites: sid
  • size: 139,388 kB
  • sloc: ansic: 141,938; cpp: 11,957; python: 7,766; makefile: 4,043; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,388; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (185 lines) | stat: -rw-r--r-- 4,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include <math.h>
#include "simple.h"
#include <stdlib.h>
#include <util/unreachable.h>

static int sign(double v) {
  if (v < 0)
    return -1;
  if (v > 0)
    return 1;
  return 0;
}

/* find the sign of the area of each of the triangles
  formed by adding a vertex of m to l 
  also find the sign of their product  */
static void sgnarea(struct vertex *l, struct vertex *m, int i[])
{
    const double a = l->pos.x;
    const double b = l->pos.y;
    const double c = after(l)->pos.x - a;
    const double d = after(l)->pos.y - b;
    const double e = m->pos.x - a;
    const double f = m->pos.y - b;
    const double g = after(m)->pos.x - a;
    const double h = after(m)->pos.y - b;
    double t = c * f - d * e;
    i[0] = sign(t);
    t = c * h - d * g;
    i[1] = sign(t);
    i[2] = i[0] * i[1];
}

/** where is `g` relative to the interval delimited by `f` and `h`?
 *
 * The order of `f` and `h` is not assumed. That is, the interval defined may be
 * `(f, h)` or `(h, f)` depending on whether `f` is less than or greater than
 * `h`.
 *
 * \param f First boundary of the interval
 * \param g Value to test
 * \param h Second boundary of the interval
 * \return -1 if g is not in the interval, 1 if g is in the interval, 0 if g is
 *   on the boundary (that is, equal to f or equal to h)
 */
static int between(double f, double g, double h) {
  if (f < g) {
    if (g < h) {
      return 1;
    }
    if (g > h) {
      return -1;
    }
    return 0;
  }
  if (f > g) {
    if (g > h) {
      return 1;
    }
    if (g < h) {
      return -1;
    }
    return 0;
  }
  return 0;
}

/* determine if vertex i of line m is on line l     */
static int online(struct vertex *l, struct vertex *m, int i)
{
    struct position a, b, c;
    a = l->pos;
    b = after(l)->pos;
    c = i == 0 ? m->pos : after(m)->pos;
    return a.x == b.x ? (a.x == c.x && -1 != between(a.y, c.y, b.y))
                      : between(a.x, c.x, b.x);
}

/* determine point of detected intersections  */
static int intpoint(struct vertex *l, struct vertex *m, double *x, double *y,
                    int cond) {
    struct position ls, le, ms, me, pt1, pt2;

    if (cond <= 0)
	return (0);
    ls = l->pos;
    le = after(l)->pos;
    ms = m->pos;
    me = after(m)->pos;

    switch (cond) {

    case 3:			/* a simple intersection        */
	if (ls.x == le.x) {
	    *x = ls.x;
	    *y = me.y + SLOPE(ms, me) * (*x - me.x);
	} else if (ms.x == me.x) {
	    *x = ms.x;
	    *y = le.y + SLOPE(ls, le) * (*x - le.x);
	} else {
	    const double m1 = SLOPE(ms, me);
	    const double m2 = SLOPE(ls, le);
	    const double c1 = ms.y - m1 * ms.x;
	    const double c2 = ls.y - m2 * ls.x;
	    *x = (c2 - c1) / (m1 - m2);
	    *y = (m1 * c2 - c1 * m2) / (m1 - m2);
	}
	break;

    case 2:			/*     the two lines  have a common segment  */
	if (online(l, m, 0) == -1) {	/* ms between ls and le */
	    pt1 = ms;
	    pt2 = online(m, l, 1) == -1 ? (online(m, l, 0 == -1) ? le : ls) : me;
	} else if (online(l, m, 1) == -1) {	/* me between ls and le */
	    pt1 = me;
	    pt2 = online(l, m, 0) == -1 ? (online(m, l, 0) == -1 ? le : ls) : ms;
	} else {
	    /* may be degenerate? */
	    if (online(m, l, 0) != -1)
		return 0;
	    pt1 = ls;
	    pt2 = le;
	}

	*x = (pt1.x + pt2.x) / 2;
	*y = (pt1.y + pt2.y) / 2;
	break;

    case 1:			/* a vertex of line m is on line l */
	if ((ls.x - le.x) * (ms.y - ls.y) == (ls.y - le.y) * (ms.x - ls.x)) {
	    *x = ms.x;
	    *y = ms.y;
	} else {
	    *x = me.x;
	    *y = me.y;
	}
	break;

    default:
	UNREACHABLE();
    }				/* end switch  */
    return 1;
}

void find_intersection(struct vertex *l, struct vertex *m,
                       intersections_t *ilist) {
    double x, y;
    int i[3];
    sgnarea(l, m, i);

    if (i[2] > 0)
	return;

    if (i[2] < 0) {
	sgnarea(m, l, i);
	if (i[2] > 0)
	    return;
	if (!intpoint(l, m, &x, &y, i[2] < 0 ? 3 : online(m, l, abs(i[0]))))
	    return;
    }

    else if (!intpoint(l, m, &x, &y, i[0] == i[1] ? 2 * MAX(online(l, m, 0),
			       online(l, m, 1)) : online(l, m, abs(i[0]))))
	return;

    struct intersection inter = {
      .firstv = l,
      .secondv = m,
      .firstp = l->poly,
      .secondp = m->poly,
      .x = x,
      .y = y
    };
    LIST_APPEND(ilist, inter);
}