1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
|
#include <algorithm>
#include <cassert>
#include <cmath>
#include <format>
#include <limits>
#include <stdexcept>
#include "svg_element.h"
#include <util/unreachable.h>
SVG::SVGElement::SVGElement(SVGElementType etype) : elem_type(etype) {}
static double px_to_pt(double px) {
// a `pt` is 0.75 `px`. See e.g.
// https://oreillymedia.github.io/Using_SVG/guide/units.html
return px * 3 / 4;
}
bool SVG::SVGElement::is_closed_shape_element() const {
switch (elem_type) {
case SVG::SVGElementType::Circle:
case SVG::SVGElementType::Ellipse:
case SVG::SVGElementType::Polygon:
case SVG::SVGElementType::Rect:
return true;
default:
return false;
}
}
bool SVG::SVGElement::is_shape_element() const {
switch (elem_type) {
case SVG::SVGElementType::Circle:
case SVG::SVGElementType::Ellipse:
case SVG::SVGElementType::Line:
case SVG::SVGElementType::Path:
case SVG::SVGElementType::Polygon:
case SVG::SVGElementType::Polyline:
case SVG::SVGElementType::Rect:
return true;
default:
return false;
}
}
static std::string xml_encode(const std::string &text) {
std::string out;
for (const char &ch : text) {
switch (ch) {
case '>':
out += ">";
break;
case '<':
out += "<";
break;
case '-':
out += "-";
break;
case '&':
out += "&";
break;
default:
out += ch;
}
}
return out;
}
static std::string rgb_to_hex(const std::string &color, double opacity = 1.0) {
const auto comma1 = color.find_first_of(",");
const auto r = std::stoi(color.substr(4, comma1 - 1));
const auto comma2 = color.find_first_of(",", comma1 + 1);
const auto g = std::stoi(color.substr(comma1 + 1, comma2 - 1));
const auto close_par = color.find_first_of(")", comma2 + 1);
const auto b = std::stoi(color.substr(comma2 + 1, close_par - 1));
const auto opacity_int = std::lround(opacity * 255.0);
const auto opacity_hex_str =
opacity_int < 255 ? std::format("{:02x}", opacity_int) : "";
return std::format("#{:02x}{:02x}{:02x}{}", r, g, b, opacity_hex_str);
}
// convert a valid color specification to the flavor that Graphviz uses in the
// SVG
static std::string to_graphviz_color(const std::string &color) {
if (color == "rgb(0,0,0)") {
return "black";
} else if (color == "rgb(255,255,255)") {
return "white";
} else if (color.starts_with("rgb")) {
return rgb_to_hex(color);
} else {
return color;
}
}
// convert a valid color specification to the RGB or RGBA type that Graphviz
// uses in the DOT source
std::string SVG::to_dot_color(const std::string &color, double opacity) {
if (color == "none") {
return "#00000000";
}
if (opacity < 1.0) {
if (!color.starts_with("rgb")) {
throw std::runtime_error{std::format(
"Cannot convert stroke={}, stroke_opacity={} to Graphviz color",
color, opacity)};
}
}
return rgb_to_hex(color, opacity);
}
void SVG::SVGElement::add_bbox() {
const auto bbox = SVGElement::bbox();
add_rect(bbox, "green");
}
void SVG::SVGElement::add_rect(SVGRect rect, const std::string color) {
SVG::SVGElement element{SVG::SVGElementType::Rect};
element.attributes.x = rect.x;
element.attributes.y = rect.y;
element.attributes.width = rect.width;
element.attributes.height = rect.height;
element.attributes.stroke_width = 0.1;
element.attributes.stroke = color;
element.attributes.fill = "none";
children.push_back(element);
}
void SVG::SVGElement::add_outline_bbox() {
const auto bbox = SVGElement::outline_bbox();
add_rect(bbox, "blue");
}
void SVG::SVGElement::add_outline_overlap_bbox(SVG::SVGElement other,
const double tolerance) {
const auto bbox = outline_bbox();
const auto other_bbox = other.outline_bbox();
const auto overlap_bbox = bbox.intersection(other_bbox);
if (overlap_bbox.width <= 0 || overlap_bbox.height <= 0) {
return;
}
const auto within_tolerance =
overlap_bbox.width <= tolerance && overlap_bbox.height <= tolerance;
const auto color = within_tolerance ? "yellow" : "red";
add_rect(overlap_bbox, color);
}
SVG::SVGRect SVG::SVGElement::bbox(bool throw_if_bbox_not_defined) {
if (!m_bbox.has_value()) {
// negative width and height bbox that will be immediately replaced by the
// first bbox found
m_bbox = {.x = std::numeric_limits<double>::max() / 2,
.y = std::numeric_limits<double>::max() / 2,
.width = std::numeric_limits<double>::lowest(),
.height = std::numeric_limits<double>::lowest()};
switch (elem_type) {
case SVG::SVGElementType::Group:
// SVG group bounding box is determined solely by its children
break;
case SVG::SVGElementType::Ellipse: {
m_bbox = {
.x = attributes.cx - attributes.rx,
.y = attributes.cy - attributes.ry,
.width = attributes.rx * 2,
.height = attributes.ry * 2,
};
break;
}
case SVG::SVGElementType::Polygon:
case SVG::SVGElementType::Polyline: {
for (const auto &point : attributes.points) {
m_bbox->extend(point);
}
break;
}
case SVG::SVGElementType::Path: {
if (path_points.empty()) {
throw std::runtime_error{"No points for 'path' element"};
}
for (const auto &point : path_points) {
m_bbox->extend(point);
}
break;
}
case SVG::SVGElementType::Rect: {
m_bbox = {
.x = attributes.x,
.y = attributes.y,
.width = attributes.width,
.height = attributes.height,
};
break;
}
case SVG::SVGElementType::Text: {
m_bbox = text_bbox();
break;
}
case SVG::SVGElementType::Title:
// title has no size
if (throw_if_bbox_not_defined) {
throw std::runtime_error{"A 'title' element has no bounding box"};
}
break;
default:
throw std::runtime_error{
std::format("Unhandled svg element type {}", tag(elem_type))};
}
const auto throw_if_child_bbox_is_not_defined = false;
for (auto &child : children) {
const auto child_bbox = child.bbox(throw_if_child_bbox_is_not_defined);
m_bbox->extend(child_bbox);
}
}
return *m_bbox;
}
SVG::SVGRect SVG::SVGElement::outline_bbox(bool throw_if_bbox_not_defined) {
if (m_outline_bbox.has_value()) {
return *m_outline_bbox;
}
// negative width and height bbox that will be immediately replaced by the
// first bbox found
m_bbox = {.x = std::numeric_limits<double>::max() / 2,
.y = std::numeric_limits<double>::max() / 2,
.width = std::numeric_limits<double>::lowest(),
.height = std::numeric_limits<double>::lowest()};
switch (elem_type) {
case SVG::SVGElementType::Group:
// SVG group bounding box is determined solely by its children
break;
case SVG::SVGElementType::Ellipse: {
const auto stroke_width = (attributes.rx == 0 && attributes.ry == 0)
? 0
: attributes.stroke_width;
m_bbox = {
.x = attributes.cx - attributes.rx - stroke_width / 2,
.y = attributes.cy - attributes.ry - stroke_width / 2,
.width = attributes.rx * 2 + stroke_width,
.height = attributes.ry * 2 + stroke_width,
};
break;
}
case SVG::SVGElementType::Polygon: {
// it takes at least 3 points to make a polygon (triangle) and Graphviz
// always generates the last point to be the same as the first so there
// will always be at least 4 points
const auto &points = attributes.points;
if (points.size() < 4) {
throw std::runtime_error{"Too few points"};
}
if (points.front().x != points.back().x ||
points.front().y != points.back().y) {
throw std::runtime_error{"First and last point are not the same"};
}
if (has_all_points_equal()) {
// the polygon has no size and will not be visible, so just arbitrarily
// select one of its (equal) points as its outline bounding box
const auto first_point = points.at(0);
m_bbox->extend(first_point);
break;
}
const auto clockwise = has_clockwise_points();
// the first and last points are always the same so we skip the last
for (auto it = points.cbegin(); it != points.cend() - 1; ++it) {
const SVG::SVGPoint &prev_point = [&]() {
if (it == points.begin()) {
// the last point is the same as the first so we must use the next
// to last one as the next point to get the start point of the
// current path segment
return *(points.cend() - 2);
} else {
return *std::prev(it);
}
}();
const auto &point = *it;
// there is always a next point since we iterate only to the next to
// last point
const auto &next_point = *std::next(it);
const SVG::SVGPoints miter_shape =
clockwise ?
// Graphviz draws some polygons clockwise and some
// counter-clockwise.
SVGElement::miter_shape(prev_point, point, next_point)
:
// the SVG spec assumes clockwise so we swap the points
SVGElement::miter_shape(next_point, point, prev_point);
for (const auto &p : miter_shape) {
m_bbox->extend(p);
}
}
break;
}
case SVG::SVGElementType::Path: {
if (path_points.empty()) {
throw std::runtime_error{"No points for 'path' element"};
}
const auto first_point = path_points.front();
auto is_vertical = std::all_of(
path_points.cbegin(), path_points.cend(),
[&](const SVGPoint &point) { return point.x == first_point.x; });
auto is_horizontal = std::all_of(
path_points.cbegin(), path_points.cend(),
[&](const SVGPoint &point) { return point.y == first_point.y; });
if (!is_vertical && !is_horizontal) {
const std::size_t num_points_in_cylinder_node_shape_path1 = 19;
const std::size_t num_points_in_cylinder_node_shape_path2 = 7;
if (path_points.size() == num_points_in_cylinder_node_shape_path1 ||
path_points.size() == num_points_in_cylinder_node_shape_path2) {
// cylinder node shape which is flat at the extreme points so we can
// just extend the crossing points with penwidth / 2 and exclude the
// intermediate control points. Graphviz uses cubic splines so there are
// always two intermediate control points between the curve segment
// endpoints.
const auto num_intermediate_control_points = 2;
for (std::size_t i = 0; i < path_points.size();
i += num_intermediate_control_points + 1) {
const auto &point = path_points[i];
SVG::SVGRect point_bbox = {
.x = point.x - attributes.stroke_width / 2,
.y = point.y - attributes.stroke_width / 2,
.width = attributes.stroke_width,
.height = attributes.stroke_width,
};
m_bbox->extend(point_bbox);
}
break;
}
const std::size_t num_points_in_curve_arrow_shape_path = 4;
if (path_points.size() == num_points_in_curve_arrow_shape_path) {
const auto horizontal_start = path_points[0].x;
const auto horizontal_control1 = path_points[1].x;
const auto horizontal_control2 = path_points[2].x;
const auto horizontal_end = path_points[3].x;
const auto vertical_start = path_points[0].y;
const auto vertical_control1 = path_points[1].y;
const auto vertical_control2 = path_points[2].y;
const auto vertical_end = path_points[3].y;
const auto has_horizontally_symmetric_control_points =
horizontal_start - horizontal_control1 ==
horizontal_control2 - horizontal_end;
const auto has_vertically_symmetric_control_points =
vertical_start - vertical_control1 ==
vertical_control2 - vertical_end;
const auto is_horizontally_mirrored =
horizontal_start == horizontal_end &&
horizontal_control1 == horizontal_control2 &&
has_vertically_symmetric_control_points;
const auto is_vertically_mirrored =
vertical_start == vertical_end &&
vertical_control1 == vertical_control2 &&
has_horizontally_symmetric_control_points;
if (is_horizontally_mirrored || is_vertically_mirrored) {
// A bezier curve which is either vertically or horizontally mirrored
// is flat at the center and has a negligible extension "backwards" at
// the start and end points. The Graphviz arrow shape `curve`, which
// is a cubic Bezier approximation of a semicircle, is a special case
// of this. A vertical edge with a `curve` arrow head is vertically
// mirrored and a horizontal edge with a `curve` arrow head is
// horizontally mirrored.
{
const auto horizontal_endpoint_extension =
is_vertically_mirrored ? attributes.stroke_width / 2 : 0;
const auto vertical_endpoint_extension =
is_horizontally_mirrored ? attributes.stroke_width / 2 : 0;
const auto num_intermediate_control_points = 2;
for (std::size_t i = 0; i < path_points.size();
i += num_intermediate_control_points + 1) {
const auto &point = path_points[i];
const SVG::SVGRect point_bbox = {
.x = point.x - horizontal_endpoint_extension,
.y = point.y - vertical_endpoint_extension,
.width = horizontal_endpoint_extension * 2,
.height = vertical_endpoint_extension * 2,
};
m_bbox->extend(point_bbox);
}
const SVGPoint midpoint = cubic_bezier(0.5);
const SVG::SVGRect point_bbox = {
.x = midpoint.x - attributes.stroke_width / 2,
.y = midpoint.y - attributes.stroke_width / 2,
.width = attributes.stroke_width,
.height = attributes.stroke_width,
};
m_bbox->extend(point_bbox);
}
break;
}
const auto xmin = std::min(horizontal_start, horizontal_end);
const auto xmax = std::max(horizontal_start, horizontal_end);
const auto ymin = std::min(vertical_start, vertical_end);
const auto ymax = std::max(vertical_start, vertical_end);
if (horizontal_control1 >= xmin && horizontal_control1 <= xmax &&
horizontal_control2 >= xmin && horizontal_control2 <= xmax &&
vertical_control1 >= ymin && vertical_control1 <= ymax &&
vertical_control2 >= ymin && vertical_control2 <= ymax) {
// the control points are within a bounding box defined by the start
// and end points. This means that the Bezier curve is completely
// contained within this box, except for the extension caused by the
// stroke width. This extension can be calculated using the angle at
// the start and end points which is given by the closest control
// point. The Graphviz arrow shapes `rcurve`, `lcurve`, `ricurve` and
// `licurve` fulfills this condition.
const auto start_dx = horizontal_start - horizontal_control1;
const auto start_dy = vertical_start - vertical_control1;
const auto start_hypot = std::hypot(start_dx, start_dy);
const auto start_cos = start_dx / start_hypot;
const auto start_sin = start_dy / start_hypot;
const SVG::SVGPoint start_extension_left = {
horizontal_start + attributes.stroke_width / 2 * start_sin,
vertical_start - attributes.stroke_width / 2 * start_cos};
const SVG::SVGPoint start_extension_right = {
horizontal_start - attributes.stroke_width / 2 * start_sin,
vertical_start + attributes.stroke_width / 2 * start_cos};
m_bbox->extend(start_extension_left);
m_bbox->extend(start_extension_right);
const auto end_dx = horizontal_end - horizontal_control2;
const auto end_dy = vertical_end - vertical_control2;
const auto end_hypot = std::hypot(end_dx, end_dy);
const auto end_cos = end_dx / end_hypot;
const auto end_sin = end_dy / end_hypot;
const SVG::SVGPoint end_extension_left = {
horizontal_end + attributes.stroke_width / 2 * end_sin,
vertical_end + -attributes.stroke_width / 2 * end_cos};
const SVG::SVGPoint end_extension_right = {
horizontal_end + -attributes.stroke_width / 2 * end_sin,
vertical_end + attributes.stroke_width / 2 * end_cos};
m_bbox->extend(end_extension_left);
m_bbox->extend(end_extension_right);
break;
}
}
throw std::runtime_error(
"paths other than straight vertical, straight horizontal or the "
"cylinder special case are currently not supported");
}
// we now know we have a straight horizontal or vertical line (or the
// degenerate case of a point)
if (is_vertical) {
const SVG::SVGRect first_point_bbox = {
first_point.x - attributes.stroke_width / 2, first_point.y,
attributes.stroke_width, 0};
m_bbox->extend(first_point_bbox);
for (const auto &point : path_points) {
m_bbox->extend(point);
}
}
if (is_horizontal) {
for (const auto &point : path_points) {
m_bbox->extend(point);
}
const SVG::SVGRect first_point_bbox = {
first_point.x, first_point.y - attributes.stroke_width / 2, 0,
attributes.stroke_width};
m_bbox->extend(first_point_bbox);
}
break;
}
case SVG::SVGElementType::Polyline: {
const auto &points = attributes.points;
if (points.size() < 2) {
throw std::runtime_error{"Too few points for 'polyline' element"};
}
// handle first point which may not be part of a corner
{
const auto first_point = points.front();
const auto next_point = points[1];
const auto dx = first_point.x - next_point.x;
const auto dy = first_point.y - next_point.y;
const auto hypot = std::hypot(dx, dy);
const auto cosAlpha = dx / hypot;
const auto sinAlpha = dy / hypot;
// a polyline extends with half the stroke width in both perpendicular
// directions, but not along the line at its endpoints
const auto x_extension = std::abs(attributes.stroke_width / 2 * sinAlpha);
const auto y_extension = std::abs(attributes.stroke_width / 2 * cosAlpha);
const SVG::SVGRect first_point_bbox = {points.front().x - x_extension,
points.front().y - y_extension,
x_extension * 2, y_extension * 2};
m_bbox->extend(first_point_bbox);
}
// handle last point which may not be part of a corner
{
const auto last_point = points.back();
const auto prev_point = *(points.cend() - 2);
const auto dx = last_point.x - prev_point.x;
const auto dy = last_point.y - prev_point.y;
const auto hypot = std::hypot(dx, dy);
const auto cosAlpha = dx / hypot;
const auto sinAlpha = dy / hypot;
// a polyline extends with half the stroke width in both perpendicular
// directions, but not along the line at its endpoints
const auto x_extension = std::abs(attributes.stroke_width / 2 * sinAlpha);
const auto y_extension = std::abs(attributes.stroke_width / 2 * cosAlpha);
const SVG::SVGRect last_point_bbox = {points.back().x - x_extension,
points.back().y - y_extension,
x_extension * 2, y_extension * 2};
m_bbox->extend(last_point_bbox);
}
if (points.size() >= 3) {
// at least one corner
if (has_all_points_equal()) {
// the polyline has no size and will not be visible, so just arbitrarily
// select one of its (equal) points as its outline bounding box
const auto first_point = points.at(0);
m_bbox->extend(first_point);
break;
}
const auto clockwise = has_clockwise_points();
for (auto it = points.cbegin() + 1; it < points.cend() - 1; ++it) {
// there is always a previous point since we iterate from the second
// point
const auto &prev_point = *std::prev(it);
const auto &point = *it;
// there is always a next point since we iterate only to the next to
// last point
const auto &next_point = *std::next(it);
SVG::SVGPoints miter_shape =
// Graphviz draws some polylines clockwise and some
// counter-clockwise.
clockwise ? SVGElement::miter_shape(prev_point, point, next_point) :
// `miter_point` assumes clockwise so we swap the points
SVGElement::miter_shape(next_point, point, prev_point);
for (const auto &p : miter_shape) {
m_bbox->extend(p);
}
}
}
break;
}
case SVG::SVGElementType::Rect:
m_bbox = {
.x = attributes.x - attributes.stroke_width / 2,
.y = attributes.y - attributes.stroke_width / 2,
.width = attributes.width + attributes.stroke_width,
.height = attributes.height + attributes.stroke_width,
};
break;
case SVG::SVGElementType::Text:
m_bbox = text_bbox();
break;
case SVG::SVGElementType::Title:
// title has no size
if (throw_if_bbox_not_defined) {
throw std::runtime_error{"A 'title' element has no bounding box"};
}
break;
default:
throw std::runtime_error{
std::format("Unhandled svg element type {}", tag(elem_type))};
}
const auto throw_if_child_bbox_is_not_defined = false;
for (auto &child : children) {
const auto child_bbox =
child.outline_bbox(throw_if_child_bbox_is_not_defined);
m_bbox->extend(child_bbox);
}
return *m_bbox;
}
SVG::SVGElement &SVG::SVGElement::find_child(const SVG::SVGElementType etype,
std::size_t index) {
std::size_t i = 0;
for (auto &child : children) {
if (child.elem_type == etype) {
if (i == index) {
return child;
}
++i;
}
}
throw std::runtime_error(
std::format("SVG element only has {} \"{}\" children, index {} not found",
i, tag(etype), index));
}
SVG::SVGRect SVG::SVGElement::text_bbox() const {
assert(elem_type == SVG::SVGElementType::Text && "Not a 'text' element");
if (attributes.font_family != "Courier,monospace") {
throw std::runtime_error(
std::format("Cannot calculate bounding box for font \"{}\"",
attributes.font_family));
}
// Empirically determined font metrics for the Courier font
const auto courier_width_per_pt = 0.6;
const auto courier_height_per_pt = 1.2;
const auto descent_per_pt = 0.257;
const auto font_width = attributes.font_size * courier_width_per_pt;
const auto font_height = attributes.font_size * courier_height_per_pt;
const auto descent = attributes.font_size * descent_per_pt;
const SVG::SVGRect bbox = {
.x = attributes.x - font_width * text.size() / 2,
.y = attributes.y - font_height + descent,
.width = font_width * text.size(),
.height = font_height,
};
return bbox;
}
void SVG::SVGElement::append_attribute(std::string &output,
const std::string &attribute) const {
if (attribute.empty()) {
return;
}
if (!output.empty()) {
output += " ";
}
output += attribute;
}
static double interpolate(double y0, double y1, double x) {
double dy = y1 - y0;
return y0 + x * dy;
}
// The cubic Bezier implementation is taken from
// https://stackoverflow.com/a/37642695/3122101
SVG::SVGPoint SVG::SVGElement::cubic_bezier(double t) {
assert(t >= 0);
assert(t <= 1);
assert(path_points.size() == 4);
const auto x0 = path_points[0].x;
const auto y0 = path_points[0].y;
const auto x1 = path_points[1].x;
const auto y1 = path_points[1].y;
const auto x2 = path_points[2].x;
const auto y2 = path_points[2].y;
const auto x3 = path_points[3].x;
const auto y3 = path_points[3].y;
const auto xa = interpolate(x0, x1, t);
const auto ya = interpolate(y0, y1, t);
const auto xb = interpolate(x1, x2, t);
const auto yb = interpolate(y1, y2, t);
const auto xc = interpolate(x2, x3, t);
const auto yc = interpolate(y2, y3, t);
const auto xm = interpolate(xa, xb, t);
const auto ym = interpolate(ya, yb, t);
const auto xn = interpolate(xb, xc, t);
const auto yn = interpolate(yb, yc, t);
const auto x = interpolate(xm, xn, t);
const auto y = interpolate(ym, yn, t);
return {x, y};
}
bool SVG::SVGElement::has_all_points_equal() const {
assert((elem_type == SVG::SVGElementType::Polygon ||
elem_type == SVG::SVGElementType::Polyline) &&
"not a polygon or polyline");
const auto points = attributes.points;
assert(!points.empty() > 0 && "no points");
return std::equal(points.begin() + 1, points.end(), points.begin());
}
bool SVG::SVGElement::has_clockwise_points() const {
assert((elem_type == SVG::SVGElementType::Polygon ||
elem_type == SVG::SVGElementType::Polyline) &&
"not a polygon or polyline");
assert(attributes.points.size() >= 3 && "too few points");
// Sum over the edges, (x2 − x1)(y2 + y1). If the result is positive, the
// curve is clockwise, if it's negative the curve is counter-clockwise.
// Implementation is based on https://stackoverflow.com/a/1165943/3122101
const auto &points = attributes.points;
double sum = 0;
for (auto it = points.cbegin(); it < points.cend() - 1; ++it) {
const auto &[x1, y1i] = *it;
const auto &[x2, y2i] = *std::next(it);
// SVG uses inverted y axis, so negate y values
const auto y1 = -y1i;
const auto y2 = -y2i;
sum += (x2 - x1) * (y2 + y1);
}
return sum > 0;
}
std::string SVG::SVGElement::fill_attribute_to_string() const {
if (attributes.fill.empty()) {
return "";
}
return std::format(R"(fill="{}")", to_graphviz_color(attributes.fill));
}
std::string SVG::SVGElement::id_attribute_to_string() const {
if (attributes.id.empty()) {
return "";
}
return std::format(R"(id="{}")", attributes.id);
}
std::string SVG::SVGElement::fill_opacity_attribute_to_string() const {
if (attributes.fill_opacity == 1) {
// Graphviz doesn't set `fill-opacity` to 1 since that's the default
return "";
}
if (attributes.fill_opacity == 0) {
// Graphviz doesn't set `fill-opacity` to 0 since in that case it sets
// `fill` to "none" instead
return "";
}
return std::format(R"(fill-opacity="{}")", attributes.fill_opacity);
}
std::string SVG::SVGElement::points_attribute_to_string() const {
std::string points_attribute_str = R"|(points=")|";
const char *separator = "";
for (const auto &point : attributes.points) {
points_attribute_str += separator + std::format("{},{}", point.x, point.y);
separator = " ";
}
points_attribute_str += '"';
return points_attribute_str;
}
std::string SVG::SVGElement::stroke_attribute_to_string() const {
if (attributes.stroke.empty()) {
return "";
}
return std::format(R"(stroke="{}")",
stroke_to_graphviz_color(attributes.stroke));
}
std::string SVG::SVGElement::stroke_opacity_attribute_to_string() const {
if (attributes.stroke_opacity == 1) {
// Graphviz doesn't set `stroke-opacity` to 1 since that's the default
return "";
}
if (attributes.stroke_opacity == 0) {
// Graphviz doesn't set `stroke-opacity` to 0 since in that case it sets
// `stroke` to "none" instead
return "";
}
return std::format(R"(stroke-opacity="{}")", attributes.stroke_opacity);
}
std::string SVG::SVGElement::stroke_width_attribute_to_string() const {
if (attributes.stroke_width == 1) {
// Graphviz doesn't set `stroke-width` to 1 since that's the default
return "";
}
return std::format(R"(stroke-width="{}")", attributes.stroke_width);
}
std::string SVG::SVGElement::to_string(std::size_t indent_size = 2) const {
std::string output;
output += R"(<?xml version="1.0" encoding="UTF-8" standalone="no"?>)"
"\n";
output += R"(<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN")"
"\n";
output += R"( "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">)"
"\n";
output += std::format("<!-- Generated by graphviz version {} "
"({})\n -->\n",
graphviz_version, graphviz_build_date);
to_string_impl(output, indent_size, 0);
return output;
}
void SVG::SVGElement::to_string_impl(std::string &output,
std::size_t indent_size,
std::size_t current_indent) const {
const auto indent_str = std::string(current_indent, ' ');
output += indent_str;
if (elem_type == SVG::SVGElementType::Svg) {
const auto comment = std::format("Title: {} Pages: 1", graphviz_id);
output += std::format("<!-- {} -->\n", xml_encode(comment));
}
if (elem_type == SVG::SVGElementType::Group &&
(attributes.class_ == "node" || attributes.class_ == "edge")) {
const auto comment = graphviz_id;
output += std::format("<!-- {} -->\n", xml_encode(comment));
}
output += "<";
output += tag(elem_type);
std::string attributes_str{};
append_attribute(attributes_str, id_attribute_to_string());
switch (elem_type) {
case SVG::SVGElementType::Ellipse:
append_attribute(attributes_str, fill_attribute_to_string());
append_attribute(attributes_str, fill_opacity_attribute_to_string());
append_attribute(attributes_str, stroke_attribute_to_string());
append_attribute(attributes_str, stroke_width_attribute_to_string());
append_attribute(attributes_str, stroke_opacity_attribute_to_string());
attributes_str +=
std::format(R"( cx="{}" cy="{}" rx="{}" ry="{}")", attributes.cx,
attributes.cy, attributes.rx, attributes.ry);
break;
case SVG::SVGElementType::Group:
attributes_str += std::format(R"( class="{}")", attributes.class_);
if (attributes.transform.has_value()) {
const auto transform = attributes.transform;
attributes_str += std::format(
R"|( transform="scale({} {}) rotate({}) translate({} {})")|",
transform->a, transform->d, transform->c, transform->e, transform->f);
}
break;
case SVG::SVGElementType::Path: {
append_attribute(attributes_str, fill_attribute_to_string());
append_attribute(attributes_str, fill_opacity_attribute_to_string());
append_attribute(attributes_str, stroke_attribute_to_string());
append_attribute(attributes_str, stroke_width_attribute_to_string());
append_attribute(attributes_str, stroke_opacity_attribute_to_string());
attributes_str += R"|( d=")|";
auto command = 'M';
for (const auto &point : path_points) {
attributes_str += std::format("{}{},{}", command, point.x, point.y);
switch (command) {
case 'M':
command = 'C';
break;
case 'C':
command = ' ';
break;
case ' ':
break;
default:
UNREACHABLE();
}
}
attributes_str += '"';
break;
}
case SVG::SVGElementType::Polygon:
append_attribute(attributes_str, fill_attribute_to_string());
append_attribute(attributes_str, fill_opacity_attribute_to_string());
append_attribute(attributes_str, stroke_attribute_to_string());
append_attribute(attributes_str, stroke_width_attribute_to_string());
append_attribute(attributes_str, stroke_opacity_attribute_to_string());
append_attribute(attributes_str, points_attribute_to_string());
break;
case SVG::SVGElementType::Polyline:
append_attribute(attributes_str, fill_attribute_to_string());
append_attribute(attributes_str, stroke_attribute_to_string());
append_attribute(attributes_str, stroke_width_attribute_to_string());
append_attribute(attributes_str, stroke_opacity_attribute_to_string());
append_attribute(attributes_str, points_attribute_to_string());
break;
case SVG::SVGElementType::Rect:
attributes_str +=
std::format(R"(x="{}" y="{}" width="{}" height="{}")", attributes.x,
attributes.y, attributes.width, attributes.height);
append_attribute(attributes_str, fill_attribute_to_string());
append_attribute(attributes_str, stroke_attribute_to_string());
append_attribute(attributes_str, stroke_width_attribute_to_string());
append_attribute(attributes_str, stroke_opacity_attribute_to_string());
break;
case SVG::SVGElementType::Svg:
attributes_str += std::format(
R"(width="{}pt" height="{}pt")"
"\n"
R"( viewBox="{:.2f} {:.2f} {:.2f} {:.2f}" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink")",
std::lround(px_to_pt(attributes.width)),
std::lround(px_to_pt(attributes.height)), attributes.viewBox.x,
attributes.viewBox.y, attributes.viewBox.width,
attributes.viewBox.height);
break;
case SVG::SVGElementType::Text:
attributes_str += std::format(
R"(xml:space="preserve" text-anchor="{}" x="{}" y="{}" font-family="{}" font-size="{:.2f}")",
attributes.text_anchor, attributes.x, attributes.y,
attributes.font_family, attributes.font_size);
break;
case SVG::SVGElementType::Title:
// Graphviz doesn't generate attributes on 'title' elements
break;
default:
throw std::runtime_error{std::format(
"Attributes on '{}' elements are not yet implemented", tag(elem_type))};
}
if (!attributes_str.empty()) {
output += " ";
}
output += attributes_str;
if (children.empty() && text.empty()) {
output += "/>\n";
} else {
output += ">";
if (!text.empty()) {
output += xml_encode(text);
}
if (!children.empty()) {
output += "\n";
for (const auto &child : children) {
child.to_string_impl(output, indent_size, current_indent + indent_size);
}
output += indent_str;
}
output += "</";
output += tag(elem_type);
output += ">\n";
}
}
SVG::SVGPoints
SVG::SVGElement::miter_shape(SVG::SVGPoint segment_start,
SVG::SVGPoint segment_end,
SVG::SVGPoint following_segment_end) const {
/*
* Compute the stroke shape miter shape according to
* https://www.w3.org/TR/SVG2/painting.html#StrokeShape.
*
* The spec assumes the points of a shape are given in clockwise
* (mathematically negative) direction which is how Graphviz draws the points
* of an arrow head. A standard arrow head looks like this:
*
* 1
* ^
* /◡\
* / θ \
* / \
* / \
* / \
* 0 ----------- 2
* (3) |
* |
* |
* |
*
*
* NOTE: Graphviz draws node shapes in the opposite direction, i.e., in
* counter-clockwise (mathematically positive) direction which means that such
* points must be reordered before calling this method.
*
* See https://www.w3.org/TR/SVG2/painting.html#TermLineJoinShape for how the
* terminating line join shape should be calculated. Below is an attempt to
* copy the diagram from the spec with some details added
*
*
* P3
* /\
* . .
* l . .
* . .
* . .
* P1 . P2
* /˙·.ٜ P ٜ .·˙ \
* / /\ \
* / /◟◞\ \
* / / θ \ \
* / / \ \
* Aleft / A / \ B \ Bleft
* / / \ \
* / / \ \
* / / α /\ \ \ β-π
* .../....../◝...../..\.....◜ ◝.....\◝.....
* / / / \ ◟ \ \
* / / \ β \
* / \
* Aright Bright
*
* A is the current segment that ends in P.
* B is the following segment that starts in P.
*
* θ is the angle between the A segment and the B segment in the reverse
* direction
*
* α is the angle of the A segment to the x-axis.
*
* β is the angle of the B segment to the x-axis.
* NOTE: In the diagram above, the B segment crosses the x-axis in the
* downwards direction so its angle to the x-axis is in this case
* larger than a semi-circle (π or 180°). In the picture it is
* around 5π/3 or 300°. The B segment in the opposite direction has
* an angle to the x-axis which is β-π. This is denoted next to the
* Bleft line in the picture.
*
* π is the number pi ≃ 3.14
*
* l is the calculated length between P1 and P3.
*
* The distance between P and P1 and between P and P2 is stroke-width / 2.
*
* NOTE: This method only implements the 'miter' join, but falls back to
* 'bevel' when stroke-miterlimit is exceeded.
*/
if (segment_start == segment_end || segment_end == following_segment_end) {
// the stroke shape is really a point so we just return this point without
// extending it with stroke width in any direction, which seems to be the
// way SVG renderers render this.
return {segment_end};
}
const auto stroke_width = attributes.stroke_width;
// SVG has inverted y axis so invert all y values before use
const SVG::SVGPoint P = {segment_end.x, -segment_end.y};
const SVG::SVGLine A = {segment_start.x, -segment_start.y, segment_end.x,
-segment_end.y};
const SVG::SVGLine B = {segment_end.x, -segment_end.y,
following_segment_end.x, -following_segment_end.y};
const auto dxA = A.x2 - A.x1;
const auto dyA = A.y2 - A.y1;
const auto hypotA = std::hypot(dxA, dyA);
const auto cosAlpha = dxA / hypotA;
const auto sinAlpha = dyA / hypotA;
const auto alpha = dyA > 0 ? std::acos(cosAlpha) : -std::acos(cosAlpha);
const SVG::SVGPoint P1 = {P.x - stroke_width / 2.0 * sinAlpha,
P.y + stroke_width / 2.0 * cosAlpha};
const auto dxB = B.x2 - B.x1;
const auto dyB = B.y2 - B.y1;
const auto hypotB = std::hypot(dxB, dyB);
const auto cosBeta = dxB / hypotB;
const auto beta = dyB > 0 ? std::acos(cosBeta) : -std::acos(cosBeta);
const auto sinBeta = dyB / hypotB;
const auto sinBetaMinusPi = -sinBeta;
const auto cosBetaMinusPi = -cosBeta;
const SVG::SVGPoint P2 = {P.x + stroke_width / 2.0 * sinBetaMinusPi,
P.y - stroke_width / 2.0 * cosBetaMinusPi};
// angle between the A segment and the B segment in the reverse direction
const auto beta_rev = beta - std::numbers::pi;
const auto theta = beta_rev - alpha;
SVG::SVGPoints line_join_shape;
const auto miter_limit = 4.0;
const auto miter_length = stroke_width / std::sin(std::abs(theta) / 2.0);
// add the bevel, which is is the triangle formed from the three points P, P1
// and P2, to the line join shape. SVG has inverted y axis so invert the
// returned y value
line_join_shape.emplace_back(P.x, -P.y);
line_join_shape.emplace_back(P1.x, -P1.y);
line_join_shape.emplace_back(P2.x, -P2.y);
if (miter_length > miter_limit * stroke_width) {
// fall back to bevel only
return line_join_shape;
}
// length between P1 and P3 (and between P2 and P3)
const auto l = stroke_width / 2.0 / std::tan(theta / 2.0);
const SVG::SVGPoint P3 = {P1.x + l * cosAlpha, P1.y + l * sinAlpha};
// SVG has inverted y axis so invert the returned y value
line_join_shape.emplace_back(P3.x, -P3.y);
return line_join_shape;
}
std::string
SVG::SVGElement::stroke_to_graphviz_color(const std::string &color) const {
return to_graphviz_color(color);
}
void SVG::SVGRect::extend(const SVGPoint &point) {
const auto xmin = std::min(x, point.x);
const auto ymin = std::min(y, point.y);
const auto xmax = std::max(x + width, point.x);
const auto ymax = std::max(y + height, point.y);
x = xmin;
y = ymin;
width = xmax - xmin;
height = ymax - ymin;
}
SVG::SVGPoint SVG::SVGRect::center() const {
return {x + width / 2, y + height / 2};
}
SVG::SVGRect SVG::SVGRect::intersection(SVG::SVGRect other) const {
const SVG::SVGLine intersection_diagonal = {
std::max(x, other.x), std::max(y, other.y),
std::min(x + width, other.x + other.width),
std::min(y + height, other.y + other.height)};
return SVG::SVGRect{
.x = intersection_diagonal.x1,
.y = intersection_diagonal.y1,
.width = intersection_diagonal.x2 - intersection_diagonal.x1,
.height = intersection_diagonal.y2 - intersection_diagonal.y1};
}
void SVG::SVGRect::extend(const SVG::SVGRect &other) {
const auto xmin = std::min(x, other.x);
const auto ymin = std::min(y, other.y);
const auto xmax = std::max(x + width, other.x + other.width);
const auto ymax = std::max(y + height, other.y + other.height);
x = xmin;
y = ymin;
width = xmax - xmin;
height = ymax - ymin;
}
std::string_view SVG::tag(SVGElementType elem_type) {
switch (elem_type) {
case SVG::SVGElementType::Circle:
return "circle";
case SVG::SVGElementType::Ellipse:
return "ellipse";
case SVG::SVGElementType::Group:
return "g";
case SVG::SVGElementType::Line:
return "line";
case SVG::SVGElementType::Path:
return "path";
case SVG::SVGElementType::Polygon:
return "polygon";
case SVG::SVGElementType::Polyline:
return "polyline";
case SVG::SVGElementType::Rect:
return "rect";
case SVG::SVGElementType::Svg:
return "svg";
case SVG::SVGElementType::Text:
return "text";
case SVG::SVGElementType::Title:
return "title";
}
UNREACHABLE();
}
bool SVG::SVGPoint::operator==(const SVGPoint &rhs) const {
return x == rhs.x && y == rhs.y;
}
bool SVG::SVGPoint::operator!=(const SVGPoint &rhs) const {
return !(*this == rhs);
}
bool SVG::SVGPoint::is_higher_than(const SVGPoint &other) const {
// SVG uses inverted y axis, so smaller is higher
return y < other.y;
}
bool SVG::SVGPoint::is_lower_than(const SVGPoint &other) const {
// SVG uses inverted y axis, so larger is lower
return y > other.y;
}
bool SVG::SVGPoint::is_more_left_than(const SVGPoint &other) const {
return x < other.x;
}
bool SVG::SVGPoint::is_more_right_than(const SVGPoint &other) const {
return x > other.x;
}
|