1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
#pragma once
#include <sparse/general.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
#define SYMMETRY_EPSILON 0.0000001
enum {FORMAT_CSR, FORMAT_COORD};
enum {UNMASKED = -10, MASKED = 1};
enum {BIPARTITE_RECT = 0, BIPARTITE_PATTERN_UNSYM, BIPARTITE_UNSYM, BIPARTITE_ALWAYS};
struct SparseMatrix_struct {
int m; /* row dimension */
int n; /* column dimension */
size_t nz; ///< the actual length used is nz, for CSR/CSC matrix this is the same as ia[n]
size_t nzmax; ///< the current length of ja and a (if exists) allocated
int type; /* whether it is real/complex matrix, or pattern only */
int *ia; /* row pointer for CSR format, or row indices for coordinate format. 0-based */
int *ja; /* column indices. 0-based */
void *a; /* entry values. If NULL, pattern matrix */
int format;/* whether it is CSR, CSC, COORD. By default it is in CSR format */
bool is_pattern_symmetric :1;
bool is_symmetric :1;
bool is_undirected :1;
size_t size;/* size of each entry. This allows for general matrix where each entry is, say, a matrix itself */
};
typedef struct SparseMatrix_struct* SparseMatrix;
enum {MATRIX_TYPE_REAL = 1<<0, MATRIX_TYPE_COMPLEX = 1<<1, MATRIX_TYPE_INTEGER = 1<<2, MATRIX_TYPE_PATTERN = 1<<3};
SparseMatrix SparseMatrix_new(int m, int n, size_t nz, int type, int format);
/* this version sum repeated entries */
SparseMatrix SparseMatrix_from_coordinate_format(SparseMatrix A);
SparseMatrix SparseMatrix_from_coordinate_format_not_compacted(SparseMatrix A);
SparseMatrix SparseMatrix_from_coordinate_arrays(size_t nz, int m, int n,
int *irn, int *jcn,
const void *val, int type,
size_t sz);
SparseMatrix SparseMatrix_from_coordinate_arrays_not_compacted(size_t nz, int m,
int n, int *irn,
int *jcn,
void *val,
int type,
size_t sz);
void SparseMatrix_export(FILE *f, SparseMatrix A);/* export into MM format except the header */
void SparseMatrix_delete(SparseMatrix A);
SparseMatrix SparseMatrix_add(SparseMatrix A, SparseMatrix B);
SparseMatrix SparseMatrix_multiply(SparseMatrix A, SparseMatrix B);
SparseMatrix SparseMatrix_multiply3(SparseMatrix A, SparseMatrix B, SparseMatrix C);
enum {SUM_REPEATED_NONE = 0, SUM_REPEATED_ALL, };
SparseMatrix SparseMatrix_sum_repeat_entries(SparseMatrix A);
SparseMatrix SparseMatrix_coordinate_form_add_entry(SparseMatrix A, int irn,
int jcn, const void *val);
bool SparseMatrix_is_symmetric(SparseMatrix A, bool test_pattern_symmetry_only);
SparseMatrix SparseMatrix_transpose(SparseMatrix A);
SparseMatrix SparseMatrix_symmetrize(SparseMatrix A,
bool pattern_symmetric_only);
void SparseMatrix_multiply_vector(SparseMatrix A, double *v, double **res);/* if v = NULL, v is assumed to be {1,1,...,1}*/
SparseMatrix SparseMatrix_remove_diagonal(SparseMatrix A);
SparseMatrix SparseMatrix_remove_upper(SparseMatrix A);/* remove diag and upper diag */
SparseMatrix SparseMatrix_divide_row_by_degree(SparseMatrix A);
SparseMatrix SparseMatrix_get_real_adjacency_matrix_symmetrized(SparseMatrix A); /* symmetric, all entries to 1, diaginal removed */
void SparseMatrix_multiply_dense(SparseMatrix A, const double *v, double *res,
int dim);
SparseMatrix SparseMatrix_apply_fun(SparseMatrix A, double (*fun)(double x));/* for real only! */
SparseMatrix SparseMatrix_copy(SparseMatrix A);
bool SparseMatrix_has_diagonal(SparseMatrix A);
SparseMatrix SparseMatrix_make_undirected(SparseMatrix A);/* make it strictly low diag only, and set flag to undirected */
int *SparseMatrix_weakly_connected_components(SparseMatrix A0, int *ncomp,
int **comps);
void SparseMatrix_decompose_to_supervariables(SparseMatrix A, int *ncluster, int **cluster, int **clusterp);
SparseMatrix SparseMatrix_get_submatrix(SparseMatrix A, int nrow, int ncol, int *rindices, int *cindices);
SparseMatrix SparseMatrix_get_augmented(SparseMatrix A);
/* bipartite_options:
BIPARTITE_RECT -- turn rectangular matrix into square),
BIPARTITE_PATTERN_UNSYM -- pattern unsummetric as bipartite
BIPARTITE_UNSYM -- unsymmetric as square
BIPARTITE_ALWAYS -- always as square
*/
SparseMatrix SparseMatrix_to_square_matrix(SparseMatrix A, int bipartite_options);
SparseMatrix SparseMatrix_sort(SparseMatrix A);
SparseMatrix SparseMatrix_set_entries_to_real_one(SparseMatrix A);
void SparseMatrix_distance_matrix(SparseMatrix A, double **dist_matrix);
/// wrap a m×n matrix into a sparse matrix
///
/// The {i,j}-th entry of the matrix is in x[i×n+j], 0≤i<m; 0≤j<n
SparseMatrix SparseMatrix_from_dense(int m, int n, double *x);
#ifdef __cplusplus
}
#endif
|