1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
.fp 5 CW
.TH LIBCDT 3
.SH NAME
\fBCdt\fR \- container data types
.SH SYNOPSIS
.de Tp
.fl
.ne 2
.TP
..
.de Ss
.fl
.ne 2
.SS "\\$1"
..
.de Cs
.nf
.ft 5
..
.de Ce
.ft 1
.fi
..
.ta 1.0i 2.0i 3.0i 4.0i 5.0i
.Cs
#include <cdt.h>
.Ce
.Ss "DICTIONARY TYPES"
.Cs
Dt_t;
Dtdisc_t;
Dtmethod_t;
Dtlink_t;
Dtstat_t;
.Ce
.Ss "DICTIONARY CONTROL"
.Cs
Dt_t* dtopen(const Dtdisc_t* disc, const Dtmethod_t* meth);
int dtclose(Dt_t* dt);
void dtclear(dt);
Dtmethod_t* dtmethod(Dt_t* dt, const Dtmethod_t* meth);
Dtdisc_t* dtdisc(Dt_t* dt, const Dtdisc_t* disc);
Dt_t* dtview(Dt_t* dt, Dt_t* view);
.Ce
.Ss "STORAGE METHODS"
.Cs
Dtmethod_t* Dtset;
Dtmethod_t* Dtoset;
Dtmethod_t* Dtobag;
.Ce
.Ss "DISCIPLINE"
.Cs
#define DTDISC(disc,key,size,link,makef,freef,comparf)
typedef void* (*Dtmake_f)(void*, Dtdisc_t*);
typedef void (*Dtfree_f)(void*, Dtdisc_t*);
typedef int (*Dtcompar_f)(Dt_t*, void*, void*, Dtdisc_t*);
.Ce
.Ss "OBJECT OPERATIONS"
.Cs
void* dtinsert(Dt_t* dt, void* obj);
void* dtdelete(Dt_t* dt, void* obj);
void* dtdetach(Dt_t* dt, void* obj);
void* dtsearch(Dt_t* dt, void* obj);
void* dtmatch(Dt_t* dt, void* key);
void* dtfirst(Dt_t* dt);
void* dtnext(Dt_t* dt, void* obj);
void* dtlast(Dt_t* dt);
void* dtprev(Dt_t* dt, void* obj);
void* dtfinger(Dt_t* dt);
void* dtrenew(Dt_t* dt, void* obj);
int dtwalk(Dt_t* dt, int (*userf)(void*, void*), void*);
Dtlink_t* dtflatten(Dt_t* dt);
Dtlink_t* dtlink(Dt_t*, Dtlink_t* link);
void* dtobj(Dt_t* dt, Dtlink_t* link);
Dtlink_t* dtextract(Dt_t* dt);
int dtrestore(Dt_t* dt, Dtlink_t* link);
.Ce
.Ss "DICTIONARY STATUS"
.Cs
int dtsize(Dt_t* dt);
int dtstat(Dt_t* dt, Dtstat_t*, int all);
.Ce
.Ss "HASH FUNCTIONS"
.Cs
unsigned int dtstrhash(void *str, int n);
.Ce
.SH DESCRIPTION
.PP
\fICdt\fP manages run-time dictionaries using standard container data types:
unordered set/multiset, ordered set/multiset, list, and stack.
.PP
.Ss "DICTIONARY TYPES"
.PP
.Ss " Dt_t"
This is the type of a dictionary handle.
.PP
.Ss " Dtdisc_t"
This defines the type of a discipline structure which describes
object lay-out and manipulation functions.
.PP
.Ss " Dtmethod_t"
This defines the type of a container method.
.PP
.Ss " Dtlink_t"
This is the type of a dictionary object holder (see \f5dtdisc()\fP.)
.PP
.Ss " Dtstat_t"
This is the type of a structure to return dictionary statistics (see \f5dtstat()\fP.)
.PP
.Ss "DICTIONARY CONTROL"
.PP
.Ss " Dt_t* dtopen(const Dtdisc_t* disc, const Dtmethod_t* meth)"
This creates a new dictionary.
\f5disc\fP is a discipline structure to describe object format.
\f5meth\fP specifies a manipulation method.
\f5dtopen()\fP returns the new dictionary or \f5NULL\fP on error.
.PP
.Ss " int dtclose(Dt_t* dt)"
This deletes \f5dt\fP and its objects.
Note that \f5dtclose()\fP fails if \f5dt\fP is being viewed by
some other dictionaries (see \f5dtview()\fP).
\f5dtclose()\fP returns \f50\fP on success and \f5-1\fP on error.
.PP
.Ss " void dtclear(Dt_t* dt)"
This deletes all objects in \f5dt\fP without closing \f5dt\fP.
.PP
.Ss " Dtmethod_t dtmethod(Dt_t* dt, const Dtmethod_t* meth)"
If \f5meth\fP is \f5NULL\fP, \f5dtmethod()\fP returns the current method.
Otherwise, it changes the storage method of \f5dt\fP to \f5meth\fP.
Switching to and from \f5Dtset\fP and \f5Dtoset/Dtobag\fP may cause
objects to be rehashed, reordered, or removed as the case requires.
\f5dtmethod()\fP returns the previous method or \f5NULL\fP on error.
.PP
.Ss " Dtdisc_t* dtdisc(Dt_t* dt, const Dtdisc_t* disc)"
If \f5disc\fP is \f5NULL\fP, \f5dtdisc()\fP returns the current discipline.
Otherwise, it changes the discipline of \f5dt\fP to \f5disc\fP.
Objects may be rehashed, reordered, or removed as appropriate.
\f5dtdisc()\fP returns the previous discipline on success
and \f5NULL\fP on error.
.PP
.Ss " Dt_t* dtview(Dt_t* dt, Dt_t* view)"
A viewpath allows a search or walk starting from a dictionary to continue to another.
\f5dtview()\fP first terminates any current view from \f5dt\fP to another dictionary.
Then, if \f5view\fP is \f5NULL\fP, \f5dtview\fP returns the terminated view dictionary.
If \f5view\fP is not \f5NULL\fP, a viewpath from \f5dt\fP to \f5view\fP is established.
\f5dtview()\fP returns \f5dt\fP on success and \f5NULL\fP on error.
.PP
It is an error to have dictionaries on a viewpath with different storage methods.
In addition, dictionaries on the same view path should
treat objects in a consistent manner with respect to comparison or hashing.
If not, undefined behaviors may result.
.PP
.Ss "STORAGE METHODS"
.PP
Storage methods are of type \f5Dtmethod_t*\fP.
\fICdt\fP supports the following methods:
.PP
.Ss " Dtoset"
.Ss " Dtobag"
Objects are ordered by comparisons.
\f5Dtoset\fP keeps unique objects.
\f5Dtobag\fP allows repeatable objects.
.PP
.Ss " Dtset"
Objects are unordered.
\f5Dtset\fP keeps unique objects.
This method uses a hash table with chaining to manage the objects.
.PP
.Ss "DISCIPLINE"
.PP
Object format and associated management functions are
defined in the type \f5Dtdisc_t\fP:
.Cs
typedef struct
{ int key, size;
int link;
Dtmake_f makef;
Dtfree_f freef;
Dtcompar_f comparf;
} Dtdisc_t;
.Ce
.Ss " int key, size"
Each object \f5obj\fP is identified by a key used for object comparison or hashing.
\f5key\fP should be non-negative and defines an offset into \f5obj\fP.
If \f5size\fP is negative, the key is a null-terminated
string with starting address \f5*(void**)((char*)obj+key)\fP.
If \f5size\fP is zero, the key is a null-terminated string with starting address
\f5(void*)((char*)obj+key)\fP.
Finally, if \f5size\fP is positive, the key is a byte array of length \f5size\fP
starting at \f5(void*)((char*)obj+key)\fP.
.PP
.Ss " int link"
Let \f5obj\fP be an object to be inserted into \f5dt\fP as discussed below.
If \f5link\fP is negative, an internally allocated object holder is used
to hold \f5obj\fP. Otherwise, \f5obj\fP should have
a \f5Dtlink_t\fP structure embedded \f5link\fP bytes into it,
i.e., at address \f5(Dtlink_t*)((char*)obj+link)\fP.
.PP
.Ss " void* (*makef)(void* obj, Dtdisc_t* disc)"
If \f5makef\fP is not \f5NULL\fP,
\f5dtinsert(dt,obj)\fP will call it
to make a copy of \f5obj\fP suitable for insertion into \f5dt\fP.
If \f5makef\fP is \f5NULL\fP, \f5obj\fP itself will be inserted into \f5dt\fP.
.PP
.Ss " void (*freef)(void* obj, Dtdisc_t* disc)"
If not \f5NULL\fP,
\f5freef\fP is used to destroy data associated with \f5obj\fP.
.PP
.Ss "int (*comparf)(Dt_t* dt, void* key1, void* key2, Dtdisc_t* disc)"
If not \f5NULL\fP, \f5comparf\fP is used to compare two keys.
Its return value should be \f5<0\fP, \f5=0\fP, or \f5>0\fP to indicate
whether \f5key1\fP is smaller, equal to, or larger than \f5key2\fP.
All three values are significant for method \f5Dtoset\fP and \f5Dtobag\fP.
For other methods, a zero value
indicates equality and a non-zero value indicates inequality.
If \f5(*comparf)()\fP is \f5NULL\fP, an internal function is used
to compare the keys as defined by the \f5Dtdisc_t.size\fP field.
.PP
.Ss "#define DTDISC(disc,key,size,link,makef,freef,comparf)"
This macro function initializes the discipline pointed to by \f5disc\fP
with the given values.
.PP
.Ss "OBJECT OPERATIONS"
.PP
.Ss " void* dtinsert(Dt_t* dt, void* obj)"
This function adds an object prototyped by \f5obj\fP into \f5dt\fP.
\f5dtinsert()\fP performs the same function
for all methods.
If there is an existing object in \f5dt\fP matching \f5obj\fP
and the storage method is \f5Dtset\fP or \f5Dtoset\fP,
\f5dtinsert()\fP will simply return the matching object.
Otherwise, a new object is inserted according to the method in use.
See \f5Dtdisc_t.makef\fP for object construction.
The new object or a matching object as noted will be returned on success
while \f5NULL\fP is returned on error.
.PP
.Ss " void* dtdelete(Dt_t* dt, void* obj)"
If \f5obj\fP is not \f5NULL\fP, there are two cases.
If the method in use is not \f5Dtobag\fP,
the first object matching \f5obj\fP is deleted.
On the other hand, if the method in use is or \f5Dtobag\fP,
the library check to see if \f5obj\fP is in the dictionary and delete it.
If \f5obj\fP is not in the dictionary, some object matching it will be deleted.
See \f5Dtdisc_t.freef\fP for object destruction.
\f5dtdelete()\fP returns the deleted object (even if it was deallocated)
or \f5NULL\fP on error.
.PP
.Ss " void* dtdetach(Dt_t* dt, void* obj)"
This function is similar to \f5dtdelete()\fP but the object to be deleted
from \f5dt\fP will not be freed (via the discipline \f5freef\fP function).
.PP
.Ss " void* dtsearch(Dt_t* dt, void* obj)"
.Ss " void* dtmatch(Dt_t* dt, void* key)"
These functions find an object matching \f5obj\fP or \f5key\fP either from \f5dt\fP or
from some dictionary accessible from \f5dt\fP via a viewpath (see \f5dtview()\fP.)
\f5dtsearch()\fP and \f5dtmatch()\fP return the matching object or
\f5NULL\fP on failure.
.PP
.Ss " void* dtfirst(Dt_t* dt)"
.Ss " void* dtnext(Dt_t* dt, void* obj)"
\f5dtfirst()\fP returns the first object in \f5dt\fP.
\f5dtnext()\fP returns the object following \f5obj\fP.
Objects are ordered based on the storage method in use.
For \f5Dtoset\fP and \f5Dtobag\fP, objects are ordered by object comparisons.
For \f5Dtset\fP,
objects are ordered by some internal order (more below).
Thus, objects in a dictionary or a viewpath can be walked using
a \f5for(;;)\fP loop as below.
.Cs
for(obj = dtfirst(dt); obj; obj = dtnext(dt,obj))
.Ce
When a dictionary uses \f5Dtset\fP,
the object order is determined upon a call to \f5dtfirst()\fP/\f5dtlast()\fP.
This order is frozen until a call \f5dtnext()\fP/\f5dtprev()\fP returns \f5NULL\fP
or when these same functions are called with a \f5NULL\fP object argument.
It is important that a \f5dtfirst()/dtlast()\fP call be
balanced by a \f5dtnext()/dtprev()\fP call as described.
Nested loops will require multiple balancing, once per loop.
If loop balancing is not done carefully, either performance is degraded
or unexpected behaviors may result.
.Ss " void* dtlast(Dt_t* dt)"
.Ss " void* dtprev(Dt_t* dt, void* obj)"
\f5dtlast()\fP and \f5dtprev()\fP are like \f5dtfirst()\fP and \f5dtnext()\fP
but work in reverse order.
Note that dictionaries on a viewpath are still walked in order
but objects in each dictionary are walked in reverse order.
.PP
.Ss " void* dtfinger(Dt_t* dt)"
This function returns the \fIcurrent object\fP of \f5dt\fP, if any.
The current object is defined after a successful call to one of
\f5dtsearch()\fP, \f5dtmatch()\fP, \f5dtinsert()\fP,
\f5dtfirst()\fP, \f5dtnext()\fP, \f5dtlast()\fP, or \f5dtprev()\fP.
As a side effect of this implementation of \fICdt\fP,
when a dictionary is based on \f5Dtoset\fP and \f5Dtobag\fP,
the current object is always defined and is the root of the tree.
.PP
.Ss " void* dtrenew(Dt_t* dt, void* obj)"
This function repositions and perhaps rehashes
an object \f5obj\fP after its key has been changed.
\f5dtrenew()\fP only works if \f5obj\fP is the current object (see \f5dtfinger()\fP).
.PP
.Ss " dtwalk(Dt_t* dt, int (*userf)(void*, void*), void* data)"
This function calls \f5(*userf)(obj,data)\fP on each object in \f5dt\fP and
other dictionaries viewable from it.
If \f5userf()\fP returns a \f5<0\fP value,
\f5dtwalk()\fP terminates and returns the same value.
\f5dtwalk()\fP returns \f50\fP on completion.
.PP
.Ss " Dtlink_t* dtflatten(Dt_t* dt)"
.Ss " Dtlink_t* dtlink(Dt_t* dt, Dtlink_t* link)"
.Ss " void* dtobj(Dt_t* dt, Dtlink_t* link)"
Using \f5dtfirst()/dtnext()\fP or \f5dtlast()/dtprev()\fP
to walk a single dictionary can incur significant cost due to function calls.
For efficient walking of a single directory (i.e., no viewpathing),
\f5dtflatten()\fP and \f5dtlink()\fP can be used.
Objects in \f5dt\fP are made into a linked list and walked as follows:
.Cs
for(link = dtflatten(dt); link; link = dtlink(dt,link) )
.Ce
.PP
Note that \f5dtflatten()\fP returns a list of type \f5Dtlink_t*\fP,
not \f5void*\fP. That is, it returns a dictionary holder pointer,
not a user object pointer
(although both are the same if the discipline field \f5link\fP is zero.)
The macro function \f5dtlink()\fP
returns the dictionary holder object following \f5link\fP.
The macro function \f5dtobj(dt,link)\fP
returns the user object associated with \f5link\fP,
Beware that the flattened object list is unflattened on any
dictionary operations other than \f5dtlink()\fP.
.PP
.Ss " Dtlink_t* dtextract(Dt_t* dt)"
.Ss " int dtrestore(Dt_t* dt, Dtlink_t* link)"
\f5dtextract()\fP extracts all objects from \f5dt\fP and makes it appear empty.
\f5dtrestore()\fP repopulates \f5dt\fP with
objects previously obtained via \f5dtextract()\fP.
\f5dtrestore()\fP will fail if \f5dt\fP is not empty.
These functions can be used
to share a same \f5dt\fP handle among many sets of objects.
They are useful to reduce dictionary overhead
in an application that creates many concurrent dictionaries.
It is important that the same discipline and method are in use at both
extraction and restoration. Otherwise, undefined behaviors may result.
.PP
.Ss "DICTIONARY INFORMATION"
.PP
.Ss " int dtsize(Dt_t* dt)"
This function returns the number of objects stored in \f5dt\fP.
.PP
.Ss " int dtstat(Dt_t *dt, Dtstat_t* st, int all)"
This function reports dictionary statistics.
If \f5all\fP is non-zero, all fields of \f5st\fP are filled.
Otherwise, only the \f5dt_type\fP and \f5dt_size\fP fields are filled.
It returns \f50\fP on success and \f5-1\fP on error.
.PP
\f5Dtstat_t\fP contains the below fields:
.Tp
\f5int dt_type\fP:
This is one of \f5DT_SET\fP, \f5DT_OSET\fP, and \f5DT_OBAG\fP.
.Tp
\f5int dt_size\fP:
This contains the number of objects in the dictionary.
.Tp
\f5size_t dt_n\fP:
For \f5Dtset\fP,
this is the number of non-empty chains in the hash table.
For \f5Dtoset\fP and \f5Dtobag\fP,
this is the deepest level in the tree (counting from zero.)
Each level in the tree contains all nodes of equal distance from the root node.
\f5dt_n\fP and the below two fields are undefined for other methods.
.Tp
\f5size_t dt_max\fP:
For \f5Dtset\fP, this is the size of a largest chain.
For \f5Dtoset\fP and \f5Dtobag\fP, this is the size of a largest level.
.Tp
\f5size_t *dt_count\fP:
For \f5Dtset\fP,
this is the list of counts for chains of particular sizes.
For example, \f5dt_count[1]\fP is the number of chains of size \f51\fP.
For \f5Dtoset\fP and \f5Dtobag\fP, this is the list of sizes of the levels.
For example, \f5dt_count[1]\fP is the size of level \f51\fP.
.PP
.Ss "HASH FUNCTIONS"
.PP
.Ss " unsigned int dtstrhash(void *str, int n)"
This function computes hash values from bytes or strings.
\f5dtstrhash()\fP computes a new hash value from string \f5str\fP.
If \f5n\fP is positive, \f5str\fP is a byte array of length \f5n\fP;
otherwise, \f5str\fP is a null-terminated string.
.PP
.SH IMPLEMENTATION NOTES
\f5Dtset\fP are based on hash tables with
move-to-front collision chains.
\f5Dtoset\fP and \f5Dtobag\fP are based on top-down splay trees.
.PP
.SH AUTHOR
Kiem-Phong Vo, kpv@research.att.com
|