1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
/* Module for clipping splines to cluster boxes.
*/
#include "config.h"
#include <dotgen/dot.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <util/agxbuf.h>
#include <util/alloc.h>
#include <util/gv_math.h>
/* Return point where line segment [pp,cp] intersects
* the box bp. Assume cp is outside the box, and pp is
* on or in the box.
*/
static pointf boxIntersectf(pointf pp, pointf cp, boxf * bp)
{
pointf ipp;
double ppx = pp.x;
double ppy = pp.y;
double cpx = cp.x;
double cpy = cp.y;
const pointf ll = bp->LL;
const pointf ur = bp->UR;
if (cp.x < ll.x) {
ipp.x = ll.x;
ipp.y = pp.y + round((ipp.x - ppx) * (ppy - cpy) / (ppx - cpx));
if (ipp.y >= ll.y && ipp.y <= ur.y)
return ipp;
}
if (cp.x > ur.x) {
ipp.x = ur.x;
ipp.y = pp.y + round((ipp.x - ppx) * (ppy - cpy) / (ppx - cpx));
if (ipp.y >= ll.y && ipp.y <= ur.y)
return ipp;
}
if (cp.y < ll.y) {
ipp.y = ll.y;
ipp.x = pp.x + round((ipp.y - ppy) * (ppx - cpx) / (ppy - cpy));
if (ipp.x >= ll.x && ipp.x <= ur.x)
return ipp;
}
if (cp.y > ur.y) {
ipp.y = ur.y;
ipp.x = pp.x + round((ipp.y - ppy) * (ppx - cpx) / (ppy - cpy));
if (ipp.x >= ll.x && ipp.x <= ur.x)
return ipp;
}
/* failure */
agerrorf(
"segment [(%.5g, %.5g),(%.5g,%.5g)] does not intersect box "
"ll=(%.5g,%.5g),ur=(%.5g,%.5g)\n", pp.x, pp.y, cp.x, cp.y, ll.x, ll.y,
ur.x, ur.y);
assert(0);
return ipp;
}
/// returns true if p is on or in box bb
static bool inBoxf(pointf p, boxf *bb) {
return INSIDE(p, *bb);
}
/* Returns subgraph with given name.
* Returns NULL if no name is given, or subgraph of
* that name does not exist.
*/
static graph_t *getCluster(char *cluster_name, Dt_t *map) {
Agraph_t* sg;
if (!cluster_name || *cluster_name == '\0')
return NULL;
sg = findCluster (map, cluster_name);
if (sg == NULL) {
agwarningf("cluster named %s not found\n", cluster_name);
}
return sg;
}
/* The following functions are derived from pp. 411-415 (pp. 791-795)
* of Graphics Gems. In the code there, they use a SGN function to
* count crossings. This doesn't seem to handle certain special cases,
* as when the last point is on the line. It certainly didn't work
* for us when we used int values; see bug 145. We needed to use `fcmp` instead.
*
* Possibly unnecessary with double values, but harmless.
*/
/* Return the number of times the Bézier control polygon crosses
* the vertical line x = xcoord.
*/
static int countVertCross(pointf * pts, double xcoord)
{
int i;
int sign, old_sign;
int num_crossings = 0;
sign = fcmp(pts[0].x, xcoord);
if (sign == 0)
num_crossings++;
for (i = 1; i <= 3; i++) {
old_sign = sign;
sign = fcmp(pts[i].x, xcoord);
if (sign != old_sign && old_sign != 0)
num_crossings++;
}
return num_crossings;
}
/* Return the number of times the Bézier control polygon crosses
* the horizontal line y = ycoord.
*/
static int countHorzCross(pointf * pts, double ycoord)
{
int i;
int sign, old_sign;
int num_crossings = 0;
sign = fcmp(pts[0].y, ycoord);
if (sign == 0)
num_crossings++;
for (i = 1; i <= 3; i++) {
old_sign = sign;
sign = fcmp(pts[i].y, ycoord);
if (sign != old_sign && old_sign != 0)
num_crossings++;
}
return num_crossings;
}
/* Given 4 Bézier control points pts, corresponding to the portion
* of an initial spline with path parameter in the range
* 0.0 <= tmin <= t <= tmax <= 1.0, return t where the spline
* first crosses a vertical line segment
* [(xcoord,ymin),(xcoord,ymax)]. Return -1 if not found.
* This is done by binary subdivision.
*/
static double
findVertical(pointf * pts, double tmin, double tmax,
double xcoord, double ymin, double ymax)
{
pointf Left[4];
pointf Right[4];
double t;
int no_cross;
if (tmin == tmax)
return tmin;
no_cross = countVertCross(pts, xcoord);
if (no_cross == 0)
return -1.0;
/* if 1 crossing and on the line x == xcoord (within 0.005 point) */
if (no_cross == 1 && fabs(pts[3].x - xcoord) <= 0.005) {
if (ymin <= pts[3].y && pts[3].y <= ymax) {
return tmax;
} else
return -1.0;
}
/* split the Bézier into halves, trying the first half first. */
Bezier(pts, 0.5, Left, Right);
t = findVertical(Left, tmin, (tmin + tmax) / 2.0, xcoord, ymin, ymax);
if (t >= 0.0)
return t;
return findVertical(Right, (tmin + tmax) / 2.0, tmax, xcoord, ymin,
ymax);
}
/* Given 4 Bézier control points pts, corresponding to the portion
* of an initial spline with path parameter in the range
* 0.0 <= tmin <= t <= tmax <= 1.0, return t where the spline
* first crosses a horizontal line segment
* [(xmin,ycoord),(xmax,ycoord)]. Return -1 if not found.
* This is done by binary subdivision.
*/
static double
findHorizontal(pointf * pts, double tmin, double tmax,
double ycoord, double xmin, double xmax)
{
pointf Left[4];
pointf Right[4];
double t;
int no_cross;
if (tmin == tmax)
return tmin;
no_cross = countHorzCross(pts, ycoord);
if (no_cross == 0)
return -1.0;
/* if 1 crossing and on the line y == ycoord (within 0.005 point) */
if (no_cross == 1 && fabs(pts[3].y - ycoord) <= 0.005) {
if (xmin <= pts[3].x && pts[3].x <= xmax) {
return tmax;
} else
return -1.0;
}
/* split the Bézier into halves, trying the first half first. */
Bezier(pts, 0.5, Left, Right);
t = findHorizontal(Left, tmin, (tmin + tmax) / 2.0, ycoord, xmin,
xmax);
if (t >= 0.0)
return t;
return findHorizontal(Right, (tmin + tmax) / 2.0, tmax, ycoord, xmin,
xmax);
}
/* Given four spline control points and a box,
* find the shortest portion of the spline from
* pts[0] to the intersection with the box, if any.
* If an intersection is found, the four points are stored in pts[0..3]
* with pts[3] being on the box, and 1 is returned. Otherwise, pts
* is left unchanged and 0 is returned.
*/
static int splineIntersectf(pointf * pts, boxf * bb)
{
double tmin = 2.0;
double t;
pointf origpts[4];
int i;
for (i = 0; i < 4; i++) {
origpts[i] = pts[i];
}
t = findVertical(pts, 0.0, 1.0, bb->LL.x, bb->LL.y, bb->UR.y);
if (t >= 0 && t < tmin) {
Bezier(origpts, t, pts, NULL);
tmin = t;
}
t = findVertical(pts, 0.0, MIN(1.0, tmin), bb->UR.x, bb->LL.y,
bb->UR.y);
if (t >= 0 && t < tmin) {
Bezier(origpts, t, pts, NULL);
tmin = t;
}
t = findHorizontal(pts, 0.0, MIN(1.0, tmin), bb->LL.y, bb->LL.x,
bb->UR.x);
if (t >= 0 && t < tmin) {
Bezier(origpts, t, pts, NULL);
tmin = t;
}
t = findHorizontal(pts, 0.0, MIN(1.0, tmin), bb->UR.y, bb->LL.x,
bb->UR.x);
if (t >= 0 && t < tmin) {
Bezier(origpts, t, pts, NULL);
tmin = t;
}
if (tmin < 2.0) {
return 1;
} else
return 0;
}
/* If edge e has a cluster head and/or cluster tail,
* clip spline to outside of cluster.
* Requirement: spline is composed of only one part,
* with n control points where n >= 4 and n (mod 3) = 1.
* If edge has arrowheads, reposition them.
*/
static void makeCompoundEdge(edge_t *e, Dt_t *clustMap) {
size_t starti = 0, endi = 0; // index of first and last control point
/* find head and tail target clusters, if defined */
graph_t *lh = getCluster(agget(e, "lhead"), clustMap); // cluster containing head
graph_t *lt = getCluster(agget(e, "ltail"), clustMap); // cluster containing tail
if (!lt && !lh)
return;
if (!ED_spl(e)) return;
/* at present, we only handle single spline case */
if (ED_spl(e)->size > 1) {
agwarningf("%s -> %s: spline size > 1 not supported\n",
agnameof(agtail(e)), agnameof(aghead(e)));
return;
}
bezier *bez = ED_spl(e)->list; // original Bézier for e
const size_t size = bez->size;
node_t *head = aghead(e);
node_t *tail = agtail(e);
/* allocate new Bézier */
bezier nbez = {0}; // new Bézier for `e`
nbez.eflag = bez->eflag;
nbez.sflag = bez->sflag;
/* if Bézier has four points, almost collinear,
* make line - unimplemented optimization?
*/
/* If head cluster defined, find first Bézier
* crossing head cluster, and truncate spline to
* box edge.
* Otherwise, leave end alone.
*/
bool fixed = false;
if (lh) {
boxf *bb = &GD_bb(lh);
if (!inBoxf(ND_coord(head), bb)) {
agwarningf("%s -> %s: head not inside head cluster %s\n",
agnameof(agtail(e)), agnameof(aghead(e)), agget(e, "lhead"));
} else {
/* If first control point is in bb, degenerate case. Spline
* reduces to four points between the arrow head and the point
* where the segment between the first control point and arrow head
* crosses box.
*/
if (inBoxf(bez->list[0], bb)) {
if (inBoxf(ND_coord(tail), bb)) {
agwarningf(
"%s -> %s: tail is inside head cluster %s\n",
agnameof(agtail(e)), agnameof(aghead(e)), agget(e, "lhead"));
} else if (!inBoxf(bez->sp, bb)) {
assert(bez->sflag); /* must be arrowhead on tail */
pointf p = boxIntersectf(bez->list[0], bez->sp, bb);
bez->list[3] = p;
bez->list[1] = mid_pointf(p, bez->sp);
bez->list[0] = mid_pointf(bez->list[1], bez->sp);
bez->list[2] = mid_pointf(bez->list[1], p);
if (bez->eflag)
endi = arrowEndClip(e, bez->list,
starti, 0, &nbez, bez->eflag);
endi += 3;
fixed = true;
}
} else {
for (endi = 0; endi < size - 1; endi += 3) {
if (splineIntersectf(&bez->list[endi], bb))
break;
}
if (endi == size - 1) { /* no intersection */
assert(bez->eflag);
nbez.ep = boxIntersectf(bez->ep, bez->list[endi], bb);
} else {
if (bez->eflag)
endi =
arrowEndClip(e, bez->list,
starti, endi, &nbez, bez->eflag);
endi += 3;
}
fixed = true;
}
}
}
if (!fixed) { // if no lh, or something went wrong, use original head
endi = size - 1;
if (bez->eflag)
nbez.ep = bez->ep;
}
/* If tail cluster defined, find last Bézier
* crossing tail cluster, and truncate spline to
* box edge.
* Otherwise, leave end alone.
*/
fixed = false;
if (lt) {
boxf *bb = &GD_bb(lt);
if (!inBoxf(ND_coord(tail), bb)) {
agwarningf("%s -> %s: tail not inside tail cluster %s\n",
agnameof(agtail(e)), agnameof(aghead(e)), agget(e, "ltail"));
} else {
/* If last control point is in bb, degenerate case. Spline
* reduces to four points between arrow head, and the point
* where the segment between the last control point and the
* arrow head crosses box.
*/
if (inBoxf(bez->list[endi], bb)) {
if (inBoxf(ND_coord(head), bb)) {
agwarningf(
"%s -> %s: head is inside tail cluster %s\n",
agnameof(agtail(e)), agnameof(aghead(e)), agget(e, "ltail"));
} else if (bez->eflag && !inBoxf(nbez.ep, bb)) {
pointf p = boxIntersectf(bez->list[endi], nbez.ep, bb);
starti = endi - 3;
bez->list[starti] = p;
bez->list[starti + 2] = mid_pointf(p, nbez.ep);
bez->list[starti + 3] = mid_pointf(bez->list[starti + 2], nbez.ep);
bez->list[starti + 1] = mid_pointf(bez->list[starti + 2], p);
if (bez->sflag)
starti = arrowStartClip(e, bez->list, starti,
endi - 3, &nbez, bez->sflag);
fixed = true;
}
} else {
for (starti = endi; starti > 0; starti -= 3) {
pointf pts[4];
for (size_t i = 0; i < 4; i++)
pts[i] = bez->list[starti - i];
if (splineIntersectf(pts, bb)) {
for (size_t i = 0; i < 4; i++)
bez->list[starti - i] = pts[i];
break;
}
}
if (starti == 0 && bez->sflag) {
nbez.sp = boxIntersectf(bez->sp, bez->list[starti], bb);
} else if (starti != 0) {
starti -= 3;
if (bez->sflag)
starti = arrowStartClip(e, bez->list, starti,
endi - 3, &nbez, bez->sflag);
}
fixed = true;
}
}
}
if (!fixed) { // if no lt, or something went wrong, use original tail
/* Note: starti == 0 */
if (bez->sflag)
nbez.sp = bez->sp;
}
/* complete Bézier, free garbage and attach new Bézier to edge
*/
nbez.size = endi - starti + 1;
nbez.list = gv_calloc(nbez.size, sizeof(pointf));
for (size_t i = 0, j = starti; i < nbez.size; i++, j++)
nbez.list[i] = bez->list[j];
free(bez->list);
*ED_spl(e)->list = nbez;
}
void dot_compoundEdges(graph_t * g)
{
edge_t *e;
node_t *n;
Dt_t* clustMap = mkClustMap (g);
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
makeCompoundEdge(e, clustMap);
}
}
dtclose(clustMap);
}
|