1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-v10.html
*
* Contributors: Details at https://graphviz.org
*************************************************************************/
/* vladimir@cs.ualberta.ca, 9-Dec-1997
* merge edges with specified samehead/sametail onto the same port
*/
#include "config.h"
#include <math.h>
#include <dotgen/dot.h>
#include <stdbool.h>
#include <stddef.h>
#include <util/list.h>
#include <util/streq.h>
typedef LIST(edge_t *) edge_list_t;
typedef struct same_t {
char *id; /* group id */
edge_list_t l; // edges in the group
} same_t;
static void free_same(same_t s) {
LIST_FREE(&s.l);
}
typedef LIST(same_t) same_list_t;
static void sameedge(same_list_t *same, edge_t *e, char *id);
static void sameport(node_t *u, edge_list_t l);
void dot_sameports(graph_t * g)
/* merge edge ports in G */
{
node_t *n;
edge_t *e;
char *id;
same_list_t samehead = {.dtor = free_same};
same_list_t sametail = {.dtor = free_same};
E_samehead = agattr_text(g, AGEDGE, "samehead", NULL);
E_sametail = agattr_text(g, AGEDGE, "sametail", NULL);
if (!(E_samehead || E_sametail))
return;
for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
for (e = agfstedge(g, n); e; e = agnxtedge(g, e, n)) {
if (aghead(e) == agtail(e)) continue; /* Don't support same* for loops */
if (aghead(e) == n && E_samehead &&
(id = agxget(e, E_samehead))[0])
sameedge(&samehead, e, id);
else if (agtail(e) == n && E_sametail &&
(id = agxget(e, E_sametail))[0])
sameedge(&sametail, e, id);
}
for (size_t i = 0; i < LIST_SIZE(&samehead); i++) {
if (LIST_SIZE(&LIST_AT(&samehead, i)->l) > 1)
sameport(n, LIST_GET(&samehead, i).l);
}
LIST_CLEAR(&samehead);
for (size_t i = 0; i < LIST_SIZE(&sametail); i++) {
if (LIST_SIZE(&LIST_AT(&sametail, i)->l) > 1)
sameport(n, LIST_GET(&sametail, i).l);
}
LIST_CLEAR(&sametail);
}
LIST_FREE(&samehead);
LIST_FREE(&sametail);
}
/// register \p e in the \p same structure of the originating node under \p id
static void sameedge(same_list_t *same, edge_t *e, char *id) {
for (size_t i = 0; i < LIST_SIZE(same); i++)
if (streq(LIST_GET(same, i).id, id)) {
LIST_APPEND(&LIST_AT(same, i)->l, e);
return;
}
same_t to_append = {.id = id};
LIST_APPEND(&to_append.l, e);
LIST_APPEND(same, to_append);
}
static void sameport(node_t *u, edge_list_t l)
/* make all edges in L share the same port on U. The port is placed on the
node boundary and the average angle between the edges. FIXME: this assumes
naively that the edges are straight lines, which is wrong if they are long.
In that case something like concentration could be done.
An arr_port is also computed that's ARR_LEN away from the node boundary.
It's used for edges that don't themselves have an arrow.
*/
{
node_t *v;
edge_t *f;
double x = 0, y = 0, x1, y1, x2, y2, r;
/* Compute the direction vector (x,y) of the average direction. We compute
with direction vectors instead of angles because else we have to first
bring the angles within PI of each other. av(a,b)!=av(a,b+2*PI) */
for (size_t i = 0; i < LIST_SIZE(&l); i++) {
edge_t *e = LIST_GET(&l, i);
if (aghead(e) == u)
v = agtail(e);
else
v = aghead(e);
x1 = ND_coord(v).x - ND_coord(u).x;
y1 = ND_coord(v).y - ND_coord(u).y;
r = hypot(x1, y1);
x += x1 / r;
y += y1 / r;
}
r = hypot(x, y);
x /= r;
y /= r;
/* (x1,y1),(x2,y2) is a segment that must cross the node boundary */
x1 = ND_coord(u).x;
y1 = ND_coord(u).y; /* center of node */
r = fmax(ND_lw(u) + ND_rw(u), ND_ht(u) + GD_ranksep(agraphof(u))); // far away
x2 = x * r + ND_coord(u).x;
y2 = y * r + ND_coord(u).y;
{ /* now move (x1,y1) to the node boundary */
pointf curve[4]; /* Bézier control points for a straight line */
curve[0].x = x1;
curve[0].y = y1;
curve[1].x = (2 * x1 + x2) / 3;
curve[1].y = (2 * y1 + y2) / 3;
curve[2].x = (2 * x2 + x1) / 3;
curve[2].y = (2 * y2 + y1) / 3;
curve[3].x = x2;
curve[3].y = y2;
shape_clip(u, curve);
x1 = curve[0].x - ND_coord(u).x;
y1 = curve[0].y - ND_coord(u).y;
}
/* compute PORT on the boundary */
port prt = {.p = {.x = round(x1), .y = round(y1)}};
prt.bp = 0;
prt.order =
(MC_SCALE * (ND_lw(u) + prt.p.x)) / (ND_lw(u) + ND_rw(u));
prt.constrained = false;
prt.defined = true;
prt.clip = false;
prt.dyna = false;
prt.theta = 0;
prt.side = 0;
prt.name = NULL;
/* assign one of the ports to every edge */
for (size_t i = 0; i < LIST_SIZE(&l); i++) {
edge_t *e = LIST_GET(&l, i);
for (; e; e = ED_to_virt(e)) { /* assign to all virt edges of e */
for (f = e; f;
f = ED_edge_type(f) == VIRTUAL &&
ND_node_type(aghead(f)) == VIRTUAL &&
ND_out(aghead(f)).size == 1 ?
ND_out(aghead(f)).list[0] : NULL) {
if (aghead(f) == u)
ED_head_port(f) = prt;
if (agtail(f) == u)
ED_tail_port(f) = prt;
}
for (f = e; f;
f = ED_edge_type(f) == VIRTUAL &&
ND_node_type(agtail(f)) == VIRTUAL &&
ND_in(agtail(f)).size == 1 ?
ND_in(agtail(f)).list[0] : NULL) {
if (aghead(f) == u)
ED_head_port(f) = prt;
if (agtail(f) == u)
ED_tail_port(f) = prt;
}
}
}
ND_has_port(u) = true; /* kinda pointless, because mincross is already done */
}
|