File: edge_bundling.cpp

package info (click to toggle)
graphviz 14.1.2-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,476 kB
  • sloc: ansic: 142,288; cpp: 11,975; python: 7,883; makefile: 4,044; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,391; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (615 lines) | stat: -rw-r--r-- 18,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include "config.h"

#include <algorithm>
#include <common/types.h>
#include <common/globals.h>
#include <sparse/general.h>
#include <math.h>
#include <numeric>
#include <sparse/SparseMatrix.h>
#include <mingle/edge_bundling.h>
#include <time.h>
#include <sparse/clustering.h>
#include <mingle/ink.h>
#include <mingle/agglomerative_bundling.h>
#include <string.h>
#include <util/prisize_t.h>
#include <vector>

#define SMALL 1.e-10

static double norm(int n, const double *x) {
  return sqrt(std::inner_product(x, x + n, x, 0.0));
}

static double sqr_dist(int dim, const double *x, const double *y) {
  int i;
  double res = 0;
  for (i = 0; i < dim; i++) res += (x[i] - y[i])*(x[i] - y[i]);
  return res;
}

static double dist(int dim, const double *x, const double *y) {
  return sqrt(sqr_dist(dim,x,y));
}

static pedge pedge_new(int np, int dim, const double *x) {
  pedge e;

  e.npoints = np;
  e.dim = dim;
  e.len = np;
  e.x.assign(x, &x[dim * e.len]);
  e.edge_length = dist(dim, &x[0 * dim], &x[(np - 1) * dim]);
  e.wgt = 1;
  return e;

}

pedge pedge_wgt_new(int np, int dim, double *x, double wgt) {
  pedge e;

  e.npoints = np;
  e.dim = dim;
  e.len = np;
  e.x.assign(x, &x[dim * e.len]);
  e.edge_length = dist(dim, &x[0 * dim], &x[(np - 1) * dim]);
  e.wgt = wgt;
  e.wgts = std::vector<double>(np - 1, wgt);
  return e;
}

void pedge_delete(pedge &) { }

static double edge_compatibility(const pedge &e1, const pedge &e2) {
  /* two edges are u1->v1, u2->v2.
     return 1 if two edges are exactly the same, 0 if they are very different.
   */
  double dist1, dist2, len1, len2;
  const int dim = e1.dim;
  bool flipped = false;

  const double *u1 = e1.x.data();
  const double *v1 = e1.x.data() + e1.npoints * dim - dim;
  const double *u2 = e2.x.data();
  const double *v2 = e2.x.data() + e2.npoints * dim - dim;
  dist1 = sqr_dist(dim, u1, u2) + sqr_dist(dim, v1, v2);
  dist2 =  sqr_dist(dim, u1, v2) + sqr_dist(dim, v1, u2);
  if (dist1 > dist2){
    std::swap(u2, v2);
    dist1 = dist2;
    flipped = true;
  }
  len1 = dist(dim, u1, v1);
  len2 = dist(dim, u2, v2);
  dist1 = std::max(0.1, dist1 / (len1 + len2 + 0.0001 * dist1));
  if (flipped){
    return -1/dist1; 
  } else {
    return 1/dist1; 
  }
}

static double edge_compatibility_full(const pedge &e1, const pedge &e2) {
  /* two edges are u1->v1, u2->v2.
     return 1 if two edges are exactly the same, 0 if they are very different.
     This is based on Holten and van Wijk's paper
   */
  double dist1, dist2, len1, len2, len;
  double tmp, ca, cp, cs;
  int dim = e1.dim, i;
  bool flipped = false;

  const double *u1 = e1.x.data();
  const double *v1 = e1.x.data() + e1.npoints * dim - dim;
  const double *u2 = e2.x.data();
  const double *v2 = e2.x.data() + e2.npoints * dim - dim;
  dist1 = sqr_dist(dim, u1, u2) + sqr_dist(dim, v1, v2);
  dist2 =  sqr_dist(dim, u1, v2) + sqr_dist(dim, v1, u2);
  if (dist1 > dist2){
    std::swap(u2, v2);
    flipped = true;
  }
  len1 = std::max(dist(dim, u1, v1), SMALL);
  len2 = std::max(dist(dim, u2, v2), SMALL);
  len = 0.5*(len1+len2);

  /* angle compatibility */
  ca = 0;
  for (i = 0; i < dim; i++) 
    ca += (v1[i]-u1[i])*(v2[i]-u2[i]);
  ca = fabs(ca/(len1*len2));
  assert(ca > -0.001);

  /* scale compatibility */
  cs = 2 / (std::max(len1, len2) / len + len / std::min(len1, len2));
  assert(cs > -0.001 && cs < 1.001);
 
  /* position compatibility */
  cp = 0;
  for (i = 0; i < dim; i++) {
    tmp = .5*(v1[i]+u1[i])-.5*(v2[i]+u2[i]);
    cp += tmp*tmp;
  }
  cp = sqrt(cp);
  cp = len/(len + cp);
  assert(cp > -0.001 && cp < 1.001);

  /* visibility compatibility */

  dist1 = cp*ca*cs;
  if (flipped){
    return -dist1; 
  } else {
    return dist1; 
  }
}

static void fprint_rgb(FILE* fp, int r, int g, int b, int alpha){
  fprintf(fp, "#%02x%02x%02x%02x", r, g, b, alpha);
}

void pedge_export_gv(FILE *fp, int ne, const std::vector<pedge> &edges) {
  double maxwgt = 0;

  fprintf(fp,"strict graph{\n");
  /* points */
  for (int i = 0; i < ne; i++){
    const pedge &edge = edges[i];
    const std::vector<double> &x = edge.x;
    const int dim = edge.dim;
    const int sta = 0;
    const int sto = edge.npoints - 1;

    fprintf(fp, "%d [pos=\"", i);
    for (int k = 0; k < dim; k++) {
      if (k != 0)  fprintf(fp, ",");
      fprintf(fp, "%f", x[sta*dim+k]);
    }
    fprintf(fp, "\"];\n");

    fprintf(fp, "%d [pos=\"", i + ne);
    for (int k = 0; k < dim; k++) {
      if (k != 0)  fprintf(fp, ",");
      fprintf(fp, "%f", x[sto*dim+k]);
    }
    fprintf(fp, "\"];\n");

  }

  /* figure out max number of bundled original edges in a pedge */
  for (int i = 0; i < ne; i++){
    const pedge &edge = edges[i];
    if (!edge.wgts.empty()) {
      for (int j = 0; j < edge.npoints - 1; j++) {
        maxwgt = std::max(maxwgt, edge.wgts[j]);
      }
    }
  }

  /* spline and colors */
  for (int i = 0; i < ne; i++){
    fprintf(fp,"%d -- %d [pos=\"", i, i + ne);
    const pedge &edge = edges[i];
    const std::vector<double> &x = edge.x;
    const int dim = edge.dim;
    /* splines */
    for (int j = 0; j < edge.npoints; j++) {
      if (j != 0) {
	int mm = 3;
	fprintf(fp," ");
	/* there are ninterval+1 points, add 3*ninterval+2 points, get rid of internal ninternal-1 points,
	  make into 3*ninterval+4 points so that gviz spline rendering can work */
	const double *tt;
	const double tt1[] = {0.15, 0.5, 0.85};
	const double tt2[] = {0.15, 0.4, 0.6, 0.85};
	if (j == 1 || j == edge.npoints - 1) {
	  // every interval gets 3 points inserted except the first and last one
	  tt = tt2;
	  mm = 4;
	} else {
	  tt = tt1;
	}
	for (int kk = 1; kk <= mm; kk++){
	  const double t = tt[kk - 1];
	  for (int k = 0; k < dim; k++) {
	    if (k != 0) fprintf(fp,",");
	    fprintf(fp, "%f", x[(j - 1) * dim + k] * (1 - t) + x[j * dim + k] * t);
	  }
	  fprintf(fp," ");
	}
      }
      if (j == 0 || j == edge.npoints - 1){
	for (int k = 0; k < dim; k++) {
	  if (k != 0) fprintf(fp,",");
	  fprintf(fp, "%f", x[j*dim+k]);
	}
      }
    }
    /* colors based on how much bundling */
    if (!edge.wgts.empty()) {
      fprintf(fp, "\", wgts=\"");
      for (int j = 0; j < edge.npoints - 1; j++){
	if (j != 0) fprintf(fp,",");
	fprintf(fp, "%f", edge.wgts[j]);
      }

      double len_total0 = 0;
      fprintf(fp, "\", color=\"");
      for (int j = 0; j < edge.npoints - 1; j++){
	double len = 0;
	int k;
	for (k = 0; k < dim; k++){
	  len += (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]) * (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]);
	}
	len = sqrt(len/k);
	len_total0 += len;
      }
      for (int j = 0; j < edge.npoints - 1; j++) {
	double len = 0;
	int k;
	for (k = 0; k < dim; k++){
	  len += (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]) * (edge.x[dim * j + k] - edge.x[dim * (j + 1) + k]);
	}
	len = sqrt(len/k);
	const double t = edge.wgts[j] / maxwgt;
	// interpolate between red (t = 1) to blue (t = 0)
	const int r = 255 * t;
	const int g = 0;
	const int b = 255 * (1 - t);
	if (j != 0) fprintf(fp,":");
	fprint_rgb(fp, r, g, b, 85);
	if (j < edge.npoints - 2) fprintf(fp, ";%f", len / len_total0);
      }

    }
    fprintf(fp, "\"];\n");
    
  }
  fprintf(fp,"}\n");
}

#ifdef DEBUG
static void pedge_print(char *comments, const pedge &e) {
  int i, j, dim;
  dim = e.dim;
  fprintf(stderr,"%s", comments);
  for (i = 0; i < e.npoints; i++){
    if (i > 0) fprintf(stderr,",");
    fprintf(stderr,"{");
    for (j = 0; j < dim; j++){
      if (j > 0) fprintf(stderr,",");
      fprintf(stderr, "%f", e.x[dim * i + j]);
    }
    fprintf(stderr,"}");
  }
  fprintf(stderr,"\n");
}
#endif

void pedge_wgts_realloc(pedge &e, int n) {
  int i;
  if (n <= e.npoints)
    return;
  e.x.resize(e.dim * n, 0);
  if (e.wgts.empty()) {
    e.wgts.resize(n - 1);
    for (i = 0; i < e.npoints; i++)
      e.wgts[i] = e.wgt;
  } else {
    e.wgts.resize(n - 1);
  }
  e.len = n;
}

void pedge_double(pedge &e) {
  /* double the number of points (more precisely, add a point between two points in the polyline */
  int npoints = e.npoints, len = e.len, i, dim = e.dim;
  int j, ii, ii2, np;

  assert(npoints >= 2);
  if (npoints*2-1 > len){
    len = 3*npoints;
    e.x.resize(dim * len, 0);
  }
  std::vector<double> &x = e.x;

  for (i = npoints - 1; i >= 0; i--){
    ii = 2*i;
    for (j = 0; j < dim; j++){
      x[dim*ii + j] = x[dim*i + j];
    }
  }

  for (i = 0; i < npoints - 1; i++){
    ii = 2*i;/* left and right interpolant of a new point */
    ii2 = 2*(i+1);
    for (j = 0; j < dim; j++){
      x[dim*(2*i + 1) + j] = 0.5*(x[dim*ii + j] + x[dim*ii2 + j]);
    }
  }
  e.len = len;
  np = e.npoints = 2 * e.npoints - 1;
  e.edge_length = dist(dim, &x.data()[0 * dim], &x.data()[(np - 1) * dim]);
}

static void edge_tension_force(std::vector<double> &force, const pedge &e) {
  const std::vector<double> &x = e.x;
  const int dim = e.dim;
  const int np = e.npoints;
  int i, left, right, j;
  double s;

  /* tension force = ((np-1)*||2x-xleft-xright||)/||e||, so the force is nominal and unitless
  */
  s =  (np - 1) / std::max(SMALL, e.edge_length);
  for (i = 1; i <= np - 2; i++){
    left = i - 1;
    right = i + 1;
    for (j = 0; j < dim; j++) force[i*dim + j] += s*(x[left*dim + j] - x[i*dim + j]);
    for (j = 0; j < dim; j++) force[i*dim + j] += s*(x[right*dim + j] - x[i*dim + j]);
  }
}

static void edge_attraction_force(double similarity, const pedge &e1,
                                  const pedge &e2, std::vector<double> &force) {
  /* attractive force from x2 applied to x1 */
  const std::vector<double> &x1 = e1.x, &x2 = e2.x;
  const int dim = e1.dim;
  const int np = e1.npoints;
  const double edge_length = e1.edge_length;

  assert(e1.npoints == e2.npoints);

  /* attractive force = 1/d where d = D/||e1|| is the relative distance, D is the distance between e1 and e2.
   so the force is nominal and unitless
  */
  if (similarity > 0){
    const double s = similarity * edge_length;
    for (int i = 1; i <= np - 2; i++){
      double dist = sqr_dist(dim, &x1.data()[i * dim], &x2.data()[i * dim]);
      if (dist < SMALL) dist = SMALL;
      const double ss = s / (dist + 0.1 * edge_length * sqrt(dist));
      for (int j = 0; j < dim; j++) force[i*dim + j] += ss*(x2[i*dim + j] - x1[i*dim + j]);
    }
  } else {/* clip e2 */
    const double s = -similarity * edge_length;
    for (int i = 1; i <= np - 2; i++){
      double dist = sqr_dist(dim, &x1.data()[i * dim], &x2.data()[(np - 1 - i) * dim]);
      if (dist < SMALL) dist = SMALL;
      const double ss = s / (dist + 0.1 * edge_length * sqrt(dist));
      for (int j = 0; j < dim; j++) force[i*dim + j] += ss*(x2[(np - 1 - i)*dim + j] - x1[i*dim + j]);
    }
  }

}

static void force_directed_edge_bundling(SparseMatrix A,
                                         std::vector<pedge> &edges, int maxit,
                                         double step0, double K) {
  int i, j, ne = A->n, k;
  int *ia = A->ia, *ja = A->ja, iter = 0;
  double *a = (double*) A->a;
  const int np = edges[0].npoints, dim = edges[0].dim;
  double step = step0;
  double fnorm_a, fnorm_t, edge_length, start;
  
  if (Verbose > 1)
    fprintf(stderr, "total interaction pairs = %" PRISIZE_T
            " out of %d, avg neighbors per edge = %f\n", A->nz, A->m * A->m,
            (double)A->nz / A->m);

  std::vector<double> force_t(dim * np);
  std::vector<double> force_a(dim * np);
  while (step > 0.001 && iter < maxit){
    start = clock();
    iter++;
    for (i = 0; i < ne; i++){
      for (j = 0; j < dim*np; j++) {
	force_t[j] = 0.;
	force_a[j] = 0.;
      }
      pedge &e1 = edges[i];
      std::vector<double> &x = e1.x;
      edge_tension_force(force_t, e1);
      for (j = ia[i]; j < ia[i+1]; j++){
	const pedge &e2 = edges[ja[j]];
	edge_attraction_force(a[j], e1, e2, force_a);
      }
      fnorm_t = std::max(SMALL, norm(dim * (np - 2), &force_t.data()[dim]));
      fnorm_a = std::max(SMALL, norm(dim * (np - 2), &force_a.data()[dim]));
      edge_length = e1.edge_length;

      for (j = 1; j <= np - 2; j++){
	for (k = 0; k < dim; k++) {
	  x[j * dim + k] += step * edge_length
	                  * (force_t[j * dim + k] + K * force_a[j * dim+k])
	                  / hypot(fnorm_t, K * fnorm_a);
	}
      }
      
    }
    step = step*0.9;
  if (Verbose > 1)
    fprintf(stderr, "iter ==== %d cpu = %f npoints = %d\n", iter, (double)(clock() - start) / CLOCKS_PER_SEC, np - 2);
  }
}

static void modularity_ink_bundling(int dim, int ne, SparseMatrix B,
                                    std::vector<pedge> &edges,
                                    double angle_param, double angle) {
  int *assignment = NULL, nclusters;
  double modularity;
  int *clusterp, *clusters;
  SparseMatrix D, C;
  point_t meet1, meet2;
  double ink0, ink1;
  int i, j, jj;

  SparseMatrix BB;

  /* B may contain negative entries */
  BB = SparseMatrix_copy(B);
  BB = SparseMatrix_apply_fun(BB, fabs);
  modularity_clustering(BB, true, 0, &nclusters, &assignment, &modularity);
  SparseMatrix_delete(BB);

  if (Verbose > 1) fprintf(stderr, "there are %d clusters, modularity = %f\n",nclusters, modularity);
  
  C = SparseMatrix_new(1, 1, 1, MATRIX_TYPE_PATTERN, FORMAT_COORD);
  
  for (i = 0; i < ne; i++){
    jj = assignment[i];
    SparseMatrix_coordinate_form_add_entry(C, jj, i, NULL);
  }
  
  D = SparseMatrix_from_coordinate_format(C);
  SparseMatrix_delete(C);
  clusterp = D->ia;
  clusters = D->ja;
  for (i = 0; i < nclusters; i++) {
    ink1 = ink(edges, clusterp[i + 1] - clusterp[i], &clusters[clusterp[i]],
               &ink0, &meet1, &meet2, angle_param, angle);
    if (Verbose > 1)
      fprintf(stderr,"nedges = %d ink0 = %f, ink1 = %f\n",clusterp[i+1] - clusterp[i], ink0, ink1);
    if (ink1 < ink0){
      for (j = clusterp[i]; j < clusterp[i+1]; j++){
	/* make this edge 5 points, insert two meeting points at 1 and 2, make 3 the last point */
	pedge_double(edges[clusters[j]]);
	pedge_double(edges[clusters[j]]);
	pedge &e = edges[clusters[j]];
	e.x[1 * dim] = meet1.x;
	e.x[1 * dim + 1] = meet1.y;
	e.x[2 * dim] = meet2.x;
	e.x[2 * dim + 1] = meet2.y;
	e.x[3 * dim] = e.x[4 * dim];
	e.x[3 * dim + 1] = e.x[4 * dim + 1];
	e.npoints = 4;
      }
    }
  }
  SparseMatrix_delete(D);
}

static SparseMatrix check_compatibility(SparseMatrix A, int ne,
                                        const std::vector<pedge> &edges,
                                        int compatibility_method, double tol) {
  /* go through the links and make sure edges are compatible */
  SparseMatrix B, C;
  int *ia, *ja, i, j, jj;
  double start;
  double dist;

  B = SparseMatrix_new(1, 1, 1, MATRIX_TYPE_REAL, FORMAT_COORD);
  ia = A->ia; ja = A->ja;
  start = clock();
  for (i = 0; i < ne; i++){
    for (j = ia[i]; j < ia[i+1]; j++){
      jj = ja[j];
      if (i == jj) continue;
      if (compatibility_method == COMPATIBILITY_DIST){
	dist = edge_compatibility_full(edges[i], edges[jj]);
      } else if (compatibility_method == COMPATIBILITY_FULL){
	dist = edge_compatibility(edges[i], edges[jj]);
      } 

      if (fabs(dist) > tol){
	B = SparseMatrix_coordinate_form_add_entry(B, i, jj, &dist);
	B = SparseMatrix_coordinate_form_add_entry(B, jj, i, &dist);
      }
    }
  }
  C = SparseMatrix_from_coordinate_format(B);
  SparseMatrix_delete(B);
  B = C;
  if (Verbose > 1)
    fprintf(stderr, "edge compatibilitu time = %f\n",((double) (clock() - start))/CLOCKS_PER_SEC);
  return B;
}

std::vector<pedge> edge_bundling(SparseMatrix A0, int dim,
                                 const std::vector<double> &x, int maxit_outer,
                                 double K, int method, int nneighbor,
                                 int compatibility_method, int max_recursion,
                                 double angle_param, double angle) {
  /* bundle edges.
     A: edge graph
     x: edge i is at {p,q}, 
     .  where p = x[2*dim*i : 2*dim*i+dim-1]
     .    and q = x[2*dim*i+dim : 2*dim*i+2*dim-1]
     maxit_outer: max outer iteration for force directed bundling. Every outer iter subdivide each edge segment into 2.
     K: nominal edge length in force directed bundling
     method: which method to use.
     nneighbor: number of neighbors to be used in forming nearest neighbor graph. Used only in agglomerative method
     compatibility_method: which method to use to calculate compatibility. Used only in force directed.
     max_recursion: used only in agglomerative method. Specify how many level of recursion to do to bundle bundled edges again

  */
  int ne = A0->m;
  SparseMatrix A = A0, B = NULL;
  int i;
  double tol = 0.001;
  int k;
  double step0 = 0.1, start = 0.0;
  int maxit = 10;

  assert(A->n == ne);
  std::vector<pedge> edges;
  edges.reserve(ne);

  for (i = 0; i < ne; i++){
    edges.emplace_back(pedge_new(2, dim, &x.data()[dim * 2 * i]));
  }

  A = SparseMatrix_symmetrize(A0, true);



  if (Verbose) start = clock();
  if (method == METHOD_INK){

    /* go through the links and make sure edges are compatible */
    B = check_compatibility(A, ne, edges, compatibility_method, tol);

    modularity_ink_bundling(dim, ne, B, edges, angle_param, angle);

  } else if (method == METHOD_INK_AGGLOMERATE){
    /* plan: merge a node with its neighbors if doing so improve. Form coarsening graph, repeat until no more ink saving */
    agglomerative_ink_bundling(dim, A, edges, nneighbor, max_recursion,
                               angle_param, angle);
  } else if (method == METHOD_FD){/* FD method */
    
    /* go through the links and make sure edges are compatible */
    B = check_compatibility(A, ne, edges, compatibility_method, tol);


    for (k = 0; k < maxit_outer; k++){
      for (i = 0; i < ne; i++){
	pedge_double(edges[i]);
      }
      step0 /= 2;
      force_directed_edge_bundling(B, edges, maxit, step0, K);
    }
    
  } else if (method == METHOD_NONE){
    ;
  } else {
    assert(0);
  }
  if (Verbose)
    fprintf(stderr, "total edge bundling cpu = %f\n", (double)(clock() - start) / CLOCKS_PER_SEC);
  if (B != A) SparseMatrix_delete(B);
  if (A != A0) SparseMatrix_delete(A);

  return edges;
}