File: clustering.c

package info (click to toggle)
graphviz 14.1.2-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 139,476 kB
  • sloc: ansic: 142,288; cpp: 11,975; python: 7,883; makefile: 4,044; yacc: 3,030; xml: 2,972; tcl: 2,495; sh: 1,391; objc: 1,159; java: 560; lex: 423; perl: 243; awk: 156; pascal: 139; php: 58; ruby: 49; cs: 31; sed: 1
file content (376 lines) | stat: -rw-r--r-- 13,363 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*************************************************************************
 * Copyright (c) 2011 AT&T Intellectual Property 
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors: Details at https://graphviz.org
 *************************************************************************/

#include "config.h"

#define STANDALONE
#include <math.h>
#include <sparse/general.h>
#include <sparse/SparseMatrix.h>
#include <sparse/clustering.h>
#include <stdbool.h>
#include <util/alloc.h>

static Multilevel_Modularity_Clustering Multilevel_Modularity_Clustering_init(SparseMatrix A, int level){
  int n = A->n, i, j;

  assert(A->type == MATRIX_TYPE_REAL);
  assert(SparseMatrix_is_symmetric(A, false));

  if (!A) return NULL;
  assert(A->m == n);
  Multilevel_Modularity_Clustering grid = gv_alloc(sizeof(struct Multilevel_Modularity_Clustering_struct));
  grid->level = level;
  grid->n = n;
  grid->A = A;
  grid->P = NULL;
  grid->next = NULL;
  grid->prev = NULL;
  grid->delete_top_level_A = false;
  grid->matching = gv_calloc(n, sizeof(double));
  grid->deg = NULL;
  grid->agglomerate_regardless = false;

  if (level == 0){
    double modularity = 0;
    int *ia = A->ia, *ja = A->ja;
    double deg_total = 0;
    double *deg, *a = A->a;

    grid->deg_total = 0.;
    grid->deg = gv_calloc(n, sizeof(double));
    deg = grid->deg;

    double *indeg = gv_calloc(n, sizeof(double));
    for (i = 0; i < n; i++){
      deg[i] = 0;
      indeg[i] = 0.;
      for (j = ia[i]; j < ia[i+1]; j++){
	deg[i] += a[j];
	if (ja[j] == i) indeg[i] = a[j];
      }
      deg_total += deg[i];
    }
    deg_total = fmax(deg_total, 1);
    for (i = 0; i < n; i++){
      modularity += (indeg[i] - deg[i]*deg[i]/deg_total)/deg_total;
    }
    grid->deg_total = deg_total;
    grid->deg = deg;
    grid->modularity = modularity;
    free(indeg);
  }


  return grid;
} 

static void Multilevel_Modularity_Clustering_delete(Multilevel_Modularity_Clustering grid){
  if (!grid) return;
  if (grid->A){
    if (grid->level == 0) {
      if (grid->delete_top_level_A) SparseMatrix_delete(grid->A);
    } else {
      SparseMatrix_delete(grid->A);
    }
  }
  SparseMatrix_delete(grid->P);
  free(grid->matching);
  free(grid->deg);

  Multilevel_Modularity_Clustering_delete(grid->next);
  free(grid);
}

static Multilevel_Modularity_Clustering Multilevel_Modularity_Clustering_establish(Multilevel_Modularity_Clustering grid, int ncluster_target){
  int *matching = grid->matching;
  SparseMatrix A = grid->A;
  int n = grid->n, level = grid->level, nc = 0;
  double modularity = 0;
  int *ia = A->ia, *ja = A->ja;
  double *deg = grid->deg;
  int i, j, jj, jc, jmax;
  double inv_deg_total = 1./ grid->deg_total;
  double gain;
  double maxgain;
  double total_gain = 0;
  modularity = grid->modularity;

  double *deg_new = gv_calloc(n, sizeof(double));
  double *deg_inter = gv_calloc(n, sizeof(double));
  int *mask = gv_calloc(n, sizeof(int));
  for (i = 0; i < n; i++) mask[i] = -1;

  assert(n == A->n);
  for (i = 0; i < n; i++) matching[i] = UNMATCHED;

  /* gain in merging node i into cluster j is
     deg(i,j)/deg_total - 2*deg(i)*deg(j)/deg_total^2
  */
  double *a = A->a;
  for (i = 0; i < n; i++){
    if (matching[i] != UNMATCHED) continue;
    /* accumulate connections between i and clusters */
    for (j = ia[i]; j < ia[i+1]; j++){
      jj = ja[j];
      if (jj == i) continue;
      if ((jc=matching[jj]) != UNMATCHED){
	if (mask[jc] != i) {
	  mask[jc] = i;
	  deg_inter[jc] = a[j];
	} else {
	  deg_inter[jc] += a[j];
	}
      }
    }

    maxgain = 0;
    jmax = -1;
    for (j = ia[i]; j < ia[i+1]; j++){
      jj = ja[j];
      if (jj == i) continue;
      if ((jc=matching[jj]) == UNMATCHED){
	/* the first 2 is due to the fact that deg_iter gives edge weight from i to jj, but there are also edges from jj to i */
	gain = (2*a[j] - 2*deg[i]*deg[jj]*inv_deg_total)*inv_deg_total;
      } else {
	if (deg_inter[jc] > 0){
	  /* the first 2 is due to the fact that deg_iter gives edge weight from i to jc, but there are also edges from jc to i */
	  gain = (2*deg_inter[jc] - 2*deg[i]*deg_new[jc]*inv_deg_total)*inv_deg_total;
	  //	  printf("mod = %f deg_inter[jc] =%f, deg[i] = %f, deg_new[jc]=%f, gain = %f\n",modularity, deg_inter[jc],deg[i],deg_new[jc],gain);
	  deg_inter[jc] = -1; /* so that we do not redo the calulation when we hit another neighbor in cluster jc */
	} else {
	  gain = -1;
	}
      }
      if (jmax < 0 || gain > maxgain){
	maxgain = gain;
        jmax = jj;
      } 

    }

    /* now merge i and jmax */
    if (maxgain > 0 || grid->agglomerate_regardless){
      total_gain += maxgain;
      jc = matching[jmax];
      if (jc == UNMATCHED){
	//fprintf(stderr, "maxgain=%f, merge %d, %d\n",maxgain, i, jmax);
	matching[i] = matching[jmax] = nc;
	deg_new[nc] = deg[i] + deg[jmax];
	nc++;
      } else {
	//fprintf(stderr, "maxgain=%f, merge with existing cluster %d, %d\n",maxgain, i, jc);
	deg_new[jc] += deg[i];
	matching[i] = jc;
      }
    } else {
      assert(maxgain <= 0);
      matching[i] = nc;
      deg_new[nc] = deg[i];
      nc++;
    }

  }

  if (Verbose) fprintf(stderr,"modularity = %f new modularity = %f level = %d, n = %d, nc = %d, gain = %g\n", modularity, modularity + total_gain, 
		       level, n, nc, total_gain);

  if (ncluster_target > 0){
    if (nc <= ncluster_target && n >= ncluster_target){
      if (n - ncluster_target > ncluster_target - nc){/* ncluster = nc */

      } else if (n - ncluster_target <= ncluster_target - nc){/* ncluster_target close to n */
	fprintf(stderr,"ncluster_target = %d, close to n=%d\n", ncluster_target, n);
	for (i = 0; i < n; i++) matching[i] = i;
	free(deg_new);
	goto RETURN;
      }
    } else if (n < ncluster_target){
      fprintf(stderr,"n < target\n");
      for (i = 0; i < n; i++) matching[i] = i;
      free(deg_new);
      goto RETURN;
    }
  }

  if (nc >= 1 && (total_gain > 0 || nc < n)){
    /* now set up restriction and prolongation operator */
    SparseMatrix P, R, R0, B, cA;
    double one = 1.;
    Multilevel_Modularity_Clustering cgrid;

    R0 = SparseMatrix_new(nc, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD);
    for (i = 0; i < n; i++){
      jj = matching[i];
      SparseMatrix_coordinate_form_add_entry(R0, jj, i, &one);
    }
    R = SparseMatrix_from_coordinate_format(R0);
    SparseMatrix_delete(R0);
    P = SparseMatrix_transpose(R);
    B = SparseMatrix_multiply(R, A);
    SparseMatrix_delete(R);
    if (!B) {
      free(deg_new);
      goto RETURN;
    }
    cA = SparseMatrix_multiply(B, P); 
    SparseMatrix_delete(B);
    if (!cA) {
      free(deg_new);
      goto RETURN;
    }
    grid->P = P;
    level++;
    cgrid = Multilevel_Modularity_Clustering_init(cA, level); 
    cgrid->deg = deg_new;
    cgrid->modularity = grid->modularity + total_gain;
    cgrid->deg_total = grid->deg_total;
    cgrid = Multilevel_Modularity_Clustering_establish(cgrid, ncluster_target);
    grid->next = cgrid;
    cgrid->prev = grid;
  } else {
    /* if we want a small number of cluster but right now we have too many, we will force agglomeration */
    if (ncluster_target > 0 && nc > ncluster_target && !(grid->agglomerate_regardless)){
      grid->agglomerate_regardless = true;
      free(deg_inter);
      free(mask);
      free(deg_new);
      return Multilevel_Modularity_Clustering_establish(grid, ncluster_target);
    }
    /* no more improvement, stop and final clustering found */
    for (i = 0; i < n; i++) matching[i] = i;
    free(deg_new);
  }

 RETURN:
  free(deg_inter);
  free(mask);
  return grid;
}

static Multilevel_Modularity_Clustering Multilevel_Modularity_Clustering_new(SparseMatrix A0, int ncluster_target){
  /* ncluster_target is used to specify the target number of cluster desired, e.g., ncluster_target=10 means that around 10 clusters
     is desired. The resulting clustering will give as close to this number as possible.
     If this number != the optimal number of clusters, the resulting modularity may be lower, or equal to, the optimal modularity.
     .  Agglomeration will be forced even if that reduces the modularity when there are too many clusters. It will stop when nc <= ncluster_target <= nc2,
     .  where nc and nc2 are the number of clusters in the current and next level of clustering. The final cluster number will be
     .  selected among nc or nc2, which ever is closer to ncluster_target.
     Default: ncluster_target <= 0 */

  Multilevel_Modularity_Clustering grid;
  SparseMatrix A = A0;

  if (!SparseMatrix_is_symmetric(A, false) || A->type != MATRIX_TYPE_REAL){
    A = SparseMatrix_get_real_adjacency_matrix_symmetrized(A);
  }
  grid = Multilevel_Modularity_Clustering_init(A, 0);

  grid = Multilevel_Modularity_Clustering_establish(grid, ncluster_target);

  if (A != A0) grid->delete_top_level_A = true; // be sure to clean up later
  return grid;
}


static void hierachical_modularity_clustering(SparseMatrix A, int ncluster_target,
					      int *nclusters, int **assignment, double *modularity){
  /* find a clustering of vertices by maximize modularity
     A: symmetric square matrix n x n. If real value, value will be used as edges weights, otherwise edge weights are considered as 1.

     ncluster_target: is used to specify the target number of cluster desired, e.g., ncluster_target=10 means that around 10 clusters 
     is desired. The resulting clustering will give as close to this number as possible.                                                                                                 
     If this number != the optimal number of clusters, the resulting modularity may be lower, or equal to, the optimal modularity.                                                      
     .  Agglomeration will be forced even if that reduces the modularity when there are too many clusters. It will stop when nc <= ncluster_target <= nc2,                                   
     .  where nc and nc2 are the number of clusters in the current and next level of clustering. The final cluster number will be                                                     
     .  selected among nc or nc2, which ever is closer to ncluster_target.                                                                                                                  
     Default: ncluster_target <= 0 

     nclusters: on output the number of clusters
     assignment: dimension n. Node i is assigned to cluster "assignment[i]". 0 <= assignment < nclusters
   */

  Multilevel_Modularity_Clustering grid, cgrid;
  int *matching, i;
  SparseMatrix P;
  assert(A->m == A->n);

  *modularity = 0.;

  grid = Multilevel_Modularity_Clustering_new(A, ncluster_target);

  /* find coarsest */
  cgrid = grid;
  while (cgrid->next){
    cgrid = cgrid->next;
  }

  /* project clustering up */
  double *u = gv_calloc(cgrid->n, sizeof(double));
  for (i = 0; i < cgrid->n; i++) u[i] = (double) (cgrid->matching)[i];
  *nclusters = cgrid->n;
  *modularity = cgrid->modularity;

  while (cgrid->prev){
    double *v = NULL;
    P = cgrid->prev->P;
    SparseMatrix_multiply_vector(P, u, &v);
    free(u);
    u = v;
    cgrid = cgrid->prev;
  }

  if (*assignment){
    matching = *assignment; 
  } else {
    matching = gv_calloc(grid->n, sizeof(int));
    *assignment = matching;
  }
  for (i = 0; i < grid->n; i++) (matching)[i] = (int) u[i];
  free(u);

  Multilevel_Modularity_Clustering_delete(grid);
}



void modularity_clustering(SparseMatrix A, bool inplace, int ncluster_target,
			   int *nclusters, int **assignment, double *modularity){
  /* find a clustering of vertices by maximize modularity
     A: symmetric square matrix n x n. If real value, value will be used as edges weights, otherwise edge weights are considered as 1.
     inplace: whether A can e modified. If true, A will be modified by removing diagonal.
     ncluster_target: is used to specify the target number of cluster desired, e.g., ncluster_target=10 means that around 10 clusters
     is desired. The resulting clustering will give as close to this number as possible.
     If this number != the optimal number of clusters, the resulting modularity may be lower, or equal to, the optimal modularity.
     .  Agglomeration will be forced even if that reduces the modularity when there are too many clusters. It will stop when nc <= ncluster_target <= nc2,
     .  where nc and nc2 are the number of clusters in the current and next level of clustering. The final cluster number will be
     .  selected among nc or nc2, which ever is closer to ncluster_target.
     Default: ncluster_target <= 0 
     nclusters: on output the number of clusters
     assignment: dimension n. Node i is assigned to cluster "assignment[i]". 0 <= assignment < nclusters
   */
  SparseMatrix B;

  assert(A->m == A->n);

  B = SparseMatrix_symmetrize(A, false);

  if (!inplace && B == A) {
    B = SparseMatrix_copy(A);
  }

  B = SparseMatrix_remove_diagonal(B);

  if (B->type != MATRIX_TYPE_REAL) B = SparseMatrix_set_entries_to_real_one(B);

  hierachical_modularity_clustering(B, ncluster_target, nclusters, assignment, modularity);

  if (B != A) SparseMatrix_delete(B);

}