1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/// \file
/// \brief Device that renders using ANSI terminal colors
#include "config.h"
#include <assert.h>
#include <gvc/gvplugin.h>
#include <gvc/gvplugin_device.h>
#include <limits.h>
#include <stddef.h>
#include <util/gv_math.h>
#include <gvc/gvio.h>
/// an ANSI color
typedef struct {
unsigned value;
unsigned red;
unsigned green;
unsigned blue;
} color_t;
/// ANSI 3-bit colors
static const color_t COLORS[] = {
{0, 0x00, 0x00, 0x00}, ///< black
{1, 0xff, 0x00, 0x00}, ///< red
{2, 0x00, 0xff, 0x00}, ///< green
{3, 0xff, 0xff, 0x00}, ///< yellow
{4, 0x00, 0x00, 0xff}, ///< blue
{5, 0xff, 0x00, 0xff}, ///< magenta
{6, 0x00, 0xff, 0xff}, ///< cyan
{7, 0xff, 0xff, 0xff}, ///< white
};
/// a metric of “closeness” to a given color
static unsigned distance(const color_t base, unsigned red, unsigned green,
unsigned blue) {
unsigned diff = 0;
diff += red > base.red ? red - base.red : base.red - red;
diff += green > base.green ? green - base.green : base.green - green;
diff += blue > base.blue ? blue - base.blue : base.blue - blue;
return diff;
}
/// find closest ANSI color
static unsigned get_color(unsigned red, unsigned green, unsigned blue) {
unsigned winner = 0;
unsigned diff = UINT_MAX;
for (size_t i = 0; i < sizeof(COLORS) / sizeof(COLORS[0]); ++i) {
unsigned d = distance(COLORS[i], red, green, blue);
if (d < diff) {
diff = d;
winner = COLORS[i].value;
}
}
return winner;
}
static void process(GVJ_t *job, int color_depth) {
unsigned char *data = job->imagedata;
assert(color_depth == 3 || color_depth == 24);
for (unsigned y = 0; y < job->height; y += 2) {
for (unsigned x = 0; x < job->width; ++x) {
{
// extract the upper pixel
unsigned offset =
y * job->width * BYTES_PER_PIXEL + x * BYTES_PER_PIXEL;
unsigned red = data[offset + 2];
unsigned green = data[offset + 1];
unsigned blue = data[offset];
// use this to select a foreground color
if (color_depth == 3) {
unsigned fg = get_color(red, green, blue);
gvprintf(job, "\033[3%um", fg);
} else {
assert(color_depth == 24);
gvprintf(job, "\033[38;2;%u;%u;%um", red, green, blue);
}
}
{
// extract the lower pixel
unsigned red = 0;
unsigned green = 0;
unsigned blue = 0;
if (y + 1 < job->height) {
unsigned offset =
(y + 1) * job->width * BYTES_PER_PIXEL + x * BYTES_PER_PIXEL;
red = data[offset + 2];
green = data[offset + 1];
blue = data[offset];
}
// use this to select a background color
if (color_depth == 3) {
unsigned bg = get_color(red, green, blue);
gvprintf(job, "\033[4%um", bg);
} else {
assert(color_depth == 24);
gvprintf(job, "\033[48;2;%u;%u;%um", red, green, blue);
}
}
// print unicode “upper half block” to effectively do two rows of
// pixels per one terminal row
gvprintf(job, "▀\033[0m");
}
gvprintf(job, "\n");
}
}
static void process3(GVJ_t *job) { process(job, 3); }
static void process24(GVJ_t *job) { process(job, 24); }
/// convert an RGB color to grayscale
static unsigned rgb_to_grayscale(unsigned red, unsigned green, unsigned blue) {
/// use “perceptual” scaling,
/// https://en.wikipedia.org/wiki/Grayscale#Colorimetric_(perceptual_luminance-preserving)_conversion_to_grayscale
const double r_linear = red / 255.0;
const double g_linear = green / 255.0;
const double b_linear = blue / 255.0;
const double y_linear =
0.2126 * r_linear + 0.7152 * g_linear + 0.0722 * b_linear;
return (unsigned)(y_linear * 255.999);
}
/// draw a y_stride×x_stride-pixels-per-character monochrome image
///
/// @param job GVC job to operate on
/// @param y_stride How many Y pixels fit in a character
/// @param x_stride How many X pixels fit in a character
/// @param tiles In-order list of characters for each representation
static void processNup(GVJ_t *job, unsigned y_stride, unsigned x_stride,
const char **tiles) {
assert(y_stride > 0);
assert(x_stride > 0);
assert(tiles != NULL);
for (unsigned i = 0; i < y_stride; ++i) {
for (unsigned j = 0; j < x_stride; ++j) {
assert(tiles[i * x_stride + j] != NULL && "missing or not enough tiles");
}
}
unsigned char *data = job->imagedata;
for (unsigned y = 0; y < job->height; y += y_stride) {
for (unsigned x = 0; x < job->width; x += x_stride) {
unsigned index = 0;
for (unsigned y_offset = 0;
y + y_offset < job->height && y_offset < y_stride; ++y_offset) {
for (unsigned x_offset = 0;
x + x_offset < job->width && x_offset < x_stride; ++x_offset) {
const unsigned offset =
(y + y_offset) * job->width * BYTES_PER_PIXEL +
(x + x_offset) * BYTES_PER_PIXEL;
const unsigned red = data[offset + 2];
const unsigned green = data[offset + 1];
const unsigned blue = data[offset];
const unsigned gray = rgb_to_grayscale(red, green, blue);
// The [0, 256) grayscale measurement can be quantized into 16
// 16-stride buckets. I.e. [0, 16) as bucket 1, [16, 32) as bucket 2,
// … Drawing a threshold at 240, and considering only the last bucket
// to be white when converting to monochrome empirically seems to
// generate reasonable results.
const unsigned pixel = gray >= 240;
index |= pixel << (y_offset * x_stride + x_offset);
}
}
gvputs(job, tiles[index]);
}
gvputc(job, '\n');
}
}
/// draw a 4-pixels-per-character monochrome image
static void process4up(GVJ_t *job) {
// block characters from the “Amstrad CPC character set”
const char *tiles[] = {" ", "▘", "▝", "▀", "▖", "▍", "▞", "▛",
"▗", "▚", "▐", "▜", "▃", "▙", "▟", "█"};
const unsigned y_stride = 2;
const unsigned x_stride = 2;
assert(sizeof(tiles) / sizeof(tiles[0]) == 1 << (y_stride * x_stride));
processNup(job, y_stride, x_stride, tiles);
}
/// draw a 6-pixels-per-character monochrome image
static void process6up(GVJ_t *job) {
// the “Teletext G1 Block Mosaics Set”
const char *tiles[] = {" ", "🬀", "🬁", "🬂", "🬃", "🬄", "🬅", "🬆", "🬇", "🬈", "🬉",
"🬊", "🬋", "🬌", "🬍", "🬎", "🬏", "🬐", "🬑", "🬒", "🬓", "▌",
"🬔", "🬕", "🬖", "🬗", "🬘", "🬙", "🬚", "🬛", "🬜", "🬝", "🬞",
"🬟", "🬠", "🬡", "🬢", "🬣", "🬤", "🬥", "🬦", "🬧", "▐", "🬨",
"🬩", "🬪", "🬫", "🬬", "🬭", "🬮", "🬯", "🬰", "🬱", "🬲", "🬳",
"🬴", "🬵", "🬶", "🬷", "🬸", "🬹", "🬺", "🬻", "█"};
const unsigned y_stride = 3;
const unsigned x_stride = 2;
assert(sizeof(tiles) / sizeof(tiles[0]) == 1 << (y_stride * x_stride));
processNup(job, y_stride, x_stride, tiles);
}
/// draw a 8-pixels-per-character monochrome image
static void process8up(GVJ_t *job) {
// the Unicode “Braille Patterns” block
const char *tiles[] = {
" ", "⠁", "⠈", "⠉", "⠂", "⠃", "⠊", "⠋", "⠐", "⠑", "⠘", "⠙", "⠒", "⠓", "⠚",
"⠛", "⠄", "⠅", "⠌", "⠍", "⠆", "⠇", "⠎", "⠏", "⠔", "⠕", "⠜", "⠝", "⠖", "⠗",
"⠞", "⠟", "⠠", "⠡", "⠨", "⠩", "⠢", "⠣", "⠪", "⠫", "⠰", "⠱", "⠸", "⠹", "⠲",
"⠳", "⠺", "⠻", "⠤", "⠥", "⠬", "⠭", "⠦", "⠧", "⠮", "⠯", "⠴", "⠵", "⠼", "⠽",
"⠶", "⠷", "⠾", "⠿", "⡀", "⡁", "⡈", "⡉", "⡂", "⡃", "⡊", "⡋", "⡐", "⡑", "⡘",
"⡙", "⡒", "⡓", "⡚", "⡛", "⡄", "⡅", "⡌", "⡍", "⡆", "⡇", "⡎", "⡏", "⡔", "⡕",
"⡜", "⡝", "⡖", "⡗", "⡞", "⡟", "⡠", "⡡", "⡨", "⡩", "⡢", "⡣", "⡪", "⡫", "⡰",
"⡱", "⡸", "⡹", "⡲", "⡳", "⡺", "⡻", "⡤", "⡥", "⡬", "⡭", "⡦", "⡧", "⡮", "⡯",
"⡴", "⡵", "⡼", "⡽", "⡶", "⡷", "⡾", "⡿", "⢀", "⢁", "⢈", "⢉", "⢂", "⢃", "⢊",
"⢋", "⢐", "⢑", "⢘", "⢙", "⢒", "⢓", "⢚", "⢛", "⢄", "⢅", "⢌", "⢍", "⢆", "⢇",
"⢎", "⢏", "⢔", "⢕", "⢜", "⢝", "⢖", "⢗", "⢞", "⢟", "⢠", "⢡", "⢨", "⢩", "⢢",
"⢣", "⢪", "⢫", "⢰", "⢱", "⢸", "⢹", "⢲", "⢳", "⢺", "⢻", "⢤", "⢥", "⢬", "⢭",
"⢦", "⢧", "⢮", "⢯", "⢴", "⢵", "⢼", "⢽", "⢶", "⢷", "⢾", "⢿", "⣀", "⣁", "⣈",
"⣉", "⣂", "⣃", "⣊", "⣋", "⣐", "⣑", "⣘", "⣙", "⣒", "⣓", "⣚", "⣛", "⣄", "⣅",
"⣌", "⣍", "⣆", "⣇", "⣎", "⣏", "⣔", "⣕", "⣜", "⣝", "⣖", "⣗", "⣞", "⣟", "⣠",
"⣡", "⣨", "⣩", "⣢", "⣣", "⣪", "⣫", "⣰", "⣱", "⣸", "⣹", "⣲", "⣳", "⣺", "⣻",
"⣤", "⣥", "⣬", "⣭", "⣦", "⣧", "⣮", "⣯", "⣴", "⣵", "⣼", "⣽", "⣶", "⣷", "⣾",
"⣿"};
const unsigned y_stride = 4;
const unsigned x_stride = 2;
assert(sizeof(tiles) / sizeof(tiles[0]) == 1 << (y_stride * x_stride));
processNup(job, y_stride, x_stride, tiles);
}
static gvdevice_engine_t engine3 = {
.format = process3,
};
static gvdevice_engine_t engine24 = {
.format = process24,
};
static gvdevice_engine_t engine4up = {
.format = process4up,
};
static gvdevice_engine_t engine6up = {
.format = process6up,
};
static gvdevice_engine_t engine8up = {
.format = process8up,
};
static gvdevice_features_t device_features = {
.default_dpi = {96, 96},
};
static gvplugin_installed_t device_types[] = {
{8, "vt:cairo", 0, &engine3, &device_features},
{1 << 24, "vt-24bit:cairo", 0, &engine24, &device_features},
{4, "vt-4up:cairo", 0, &engine4up, &device_features},
{6, "vt-6up:cairo", 0, &engine6up, &device_features},
{7, "vt-8up:cairo", 0, &engine8up, &device_features},
{0},
};
static gvplugin_api_t apis[] = {
{API_device, device_types},
{(api_t)0, 0},
};
#ifdef GVDLL
#define GVPLUGIN_VT_API __declspec(dllexport)
#else
#define GVPLUGIN_VT_API
#endif
GVPLUGIN_VT_API gvplugin_library_t gvplugin_vt_LTX_library = {"vt", apis};
|